Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(6): 14104-14125, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36585583

ABSTRACT

Fewer fossil fuel deposits, price volatility, and environmental concerns have intensified biofuel-based studies. Saccharification, gasification, and pyrolysis are some of the potential methods of producing carbohydrate-based fuels, while lipid extraction is the preferred method of producing biodiesel and green diesel. Over the years, multiple studies have attempted to identify an ideal catalyst as well as optimize the abovementioned methods to produce higher yields at a lower cost. Therefore, this present study comprehensively examined the factors affecting biodiesel stability. Firstly, isomerization, which is typically used to reduce unsaturated fatty acid content, was found to improve oxidative stability as well as maintain and improve cold flow properties. Meanwhile, polymers, surfactants, or small molecules with low melting points were found to improve the cold flow properties of biodiesel. Meanwhile, transesterification with an enzyme could be used to remove monoacylglycerols from oil feedstock. Furthermore, combining two natural antioxidants could potentially slow lipid oxidation if stainless steel, carbon steel, or aluminum are used as biodiesel storage materials. This present review also recommends combining green diesel and biodiesel to improve stability. Furthermore, green diesel can be co-produced at oil refineries that are more selective and have a limited supply of hydrogen. Lastly, next-generation farming should be examined to avoid competing interests in food and energy as well as to improve agricultural efficiency.


Subject(s)
Biofuels , Food , Esterification , Oxidation-Reduction , Lipids
2.
ACS Omega ; 7(35): 30807-30815, 2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36092580

ABSTRACT

Nanozeolite Y was synthesized without a template and modified with phosphorous (P) and metals. P was introduced via impregnation with different weight loadings (0.5, 1, and 2 wt %), while ion exchange was developed to introduce zirconium (Zr) and cobalt (Co). The physicochemical properties of the catalysts were characterized with X-ray diffraction (XRD), N2 adsorption-desorption, temperature-programmed desorption of ammonia (NH3-TPD), and 27Al and 31P solid-state nuclear magnetic resonance (NMR). The parent nanozeolite Y showed an identical XRD pattern to that of a previous study, and the modified nanozeolite Y showed a lower crystallinity. The introduction of P altered tetrahedral Al to an octahedral coordination, which affected the catalyst acidity. Then, the catalyst was evaluated to produce olefins from n-dodecane at 550, 575, and 600 °C. The conversion, gas yield, and olefin yield increased with increasing temperature. The maximum olefin yield (63%) was achieved with the introduction of 1 wt % P with the highest selectivity to ethylene. The Co-modified nanozeolite altered the zeolite structure and exhibited similar activity to the P-modified one. Meanwhile, Zr-modified nanozeolite Y caused excessive metal distribution, blocked the porous structure of the zeolite, and then reduced the catalytic activity.

3.
RSC Adv ; 12(28): 18274-18281, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35800300

ABSTRACT

Nanozeolite-Y was synthesized in the absence of a templating agent with several modification methods. The parent nanozeolite-Y was prepared with different sodium (Na) contents and crystallization conditions. Then, the parent nanozeolite-Y was modified by ion exchange, calcination, and steam treatment. The treatment caused insignificant changes to the ratio of alumina and silica but altered the zeolite acid sites. The Lewis and Brønsted acidity changed after the treatment depending on the modification approach, as indicated by the FTIR spectroscopy of pyridine. The ammonia temperature programmed desorption (NH3-TPD) confirmed that the acid sites consisted of weak and medium sites, which decreased after modifications. Moreover, the solid-state nuclear magnetic resonance (NMR) spectroscopy revealed that the position of Al shifted from tetrahedral to a combined octahedral and pentahedral framework. The catalytic evaluation for dodecane cracking at 550 °C shows the gas yield as the main product with naphtha as a side product. The gas yield consisted of 50% light olefins from ethylene to butene. However, the process yielded 9% of coke that led to faster catalyst deactivation because of nanozeolite-Y evolution and product transformation.

4.
ACS Omega ; 7(12): 10317-10329, 2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35382321

ABSTRACT

This study emphasizes tuning the synthesis conditions of MFI zeolites to achieve better catalytic properties by optimizing the mesoporosity, the balance between Brønsted and Lewis sites, and the zeolite particle sizes. The MFI zeolites were hydrothermally synthesized at various temperatures employing different silica sources. The synthesis temperature was varied between 110 to 180 °C at constant synthesis time (15 h). Different silicon sources led to variations in structure, morphology, and size of the MFI zeolite along with tuned Lewis and Brønsted acid sites in parallel correlation with shape selectivity of the reaction. The catalytic activities of synthesized zeolites were investigated in the catalytic cracking of n-dodecane to produce value-added chemicals. The zeolite synthesized at 180 °C using fumed silica presented the highest catalytic conversion (96.6%), while maximum light olefin gaseous products (73.1%) were obtained for the sample synthesized at 140 °C using tetraethyl orthosilicate as the silica source. The MFI zeolite synthesized at 180 °C employing tetraethyl orthosilicate as a silica source facilitated the formation of both naphthenes and aromatics (71.3%) as major liquid products.

5.
Molecules ; 27(3)2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35163929

ABSTRACT

The production of sustainable diesel without hydrogen addition remains a challenge for low-cost fuel production. In this work, the pyrolysis of unsaturated fatty acid (UFA) basic soaps was studied for the production sustainable diesel (bio-hydrocarbons). UFAs were obtained from palm fatty acids distillate (PFAD), which was purified by the fractional crystallization method. Metal hydroxides were used to make basic soap composed of a Ca, Mg, and Zn mixture with particular composition. The pyrolysis reactions were carried out in a batch reactor at atmospheric pressure and various temperatures from 375 to 475 °C. The liquid products were obtained with the best yield (58.35%) at 425 °C and yield of diesel fraction 53.4%. The fatty acids were not detected in the pyrolysis liquid product. The gas product consisted of carbon dioxide and methane. The liquid products were a mixture of hydrocarbon with carbon chains in the range of C7 and C20 containing n-alkane, alkene, and iso-alkane.

6.
J Environ Manage ; 305: 114274, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34959056

ABSTRACT

Biomass valorization via catalytic gasification is a potential technology for commercizalization to industrial scale. However, the generated tar during biomass valorization posing numerous problems to the overall reaction process. Thus, catalytic tar removal via reforming, cracking and allied processes was among the priority areas to researchers in the recent decades. This paper reports new updates on the areas of catalyst development for tar reduction. The catalyst survey include metallic and metal-promoted materials, nano-structured systems, mesoporous supports like zeolites and oxides, group IA and IIA compounds and natural catalysts based on dolomite, palygorskite, olivine, ilmenite, goethite and their modified derivatives. The influence of catalyst properties and parameters such as reaction conditions, catalyst preparation procedures and feedstock nature on the overall activity/selectivity/stability properties were simultaneously discussed. This paper not only cover to model compounds, but also explore to real biomass-derived tar for consistency. The area that require further investigation was identified in the last part of this review.


Subject(s)
Gases , Oxides , Biomass , Catalysis
7.
RSC Adv ; 11(14): 7904-7912, 2021 Feb 17.
Article in English | MEDLINE | ID: mdl-35423304

ABSTRACT

Nano BEA zeolite catalysts were synthesized and modified by desilication and then ion-exchanged with Co. The desilication was carried out using 0.1 M of NaOH. The synthesized and modified nano BEA catalysts were characterized via different characterization techniques. Ammonia temperature program desorption (NH3-TPD) and the pyridine Fourier transform infrared (pyridine-FTIR) were utilized to investigate the acidity of catalysts. X-ray diffraction (XRD), 27Al and 29Si nuclear magnetic resonance (NMR) spectroscopy techniques were used to examine the structure of the catalysts. The XRD patterns of the as-synthesized nano BEA catalysts were identical to that of the reference, while the NMR analysis revealed the distribution of silicon and aluminum in the BEA structure. The scanning electron microscope (SEM) analysis confirmed that the fabricated catalysts were less than 100 nm. The desilication and Co ion-exchange altered the acidity of the catalyst. The catalysts were evaluated in the cracking of sssssss to light olefins in the temperature range from 400 °C to 600 °C. The conversion increased with the increase in the reaction temperature for both catalysts; the conversion was above 90% for the Co-BEA catalyst at a temperature above 450 °C. The yield of light olefins also increased at higher temperatures for both catalysts, while at a lower temperature the yield to light olefins was ca. 40% over that of Co-BEA.

8.
Heliyon ; 5(11): e02766, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31844705

ABSTRACT

In this work, TiO2/SiO2 composite photocatalysts were prepared using biogenic silica extracted from bamboo leaves and titanium tetraisopropoxide as a titania precursor via a sol-gel mechanism. A study of the physicochemical properties of materials as a function of their titanium dioxide content was conducted using Fourier transform infrared spectroscopy, a scanning electron microscope, a diffuse reflectance ultraviolet-visible (UV-vis) spectrophotometer, and a gas sorption analyzer. The relationship between physicochemical parameters and photocatalytic performance was evaluated using the methylene blue (MB) photocatalytic degradation process under UV irradiation with and without the addition of H2O2 as an oxidant. The results demonstrated that increasing the TiO2 helps enhance the parameters of specific surface area, the pore volume, and the particle size of titanium dioxide, while the band gap energy reaches a maximum of 3.21 eV for 40% and 60% Ti content. The composites exhibit photocatalytic activity with the MB degradation with increasing photocatalytic efficiency since the composites with 40 and 60% wt. of TiO2 demonstrated the higher degradation rate compared with TiO2 in the presence and absence of H2O2. This higher rate is correlated with the higher specific surface area and band gap energy compared with those of TiO2.

9.
Front Chem ; 7: 233, 2019.
Article in English | MEDLINE | ID: mdl-31106190

ABSTRACT

Many countries have opted to produce biodiesel from vegetable oils for energy security and climate change concerns. Consequently, the availability of abundant glycerol, as a by-product in biodiesel production, is more obvious. Many institutions and companies have explored different routes to convert glycerol to highly-added chemical products and fuel additives. As the addition of the second reactant to glycerol may end up with worse exergy calculation, the conversion of glycerol over solid acid catalysts without the addition of the second reactant is preferred in this mini-review. Glycerol aromatization and glycerol dehydration over zeolite catalysts were focused with an emphasis on recent papers in the past 3 years. The role of acidity, hydrophilicity-hydrophobicity, zeolite frameworks are highlighted. The presence of water in the glycerol feed affected the stability of the catalysts. Low cost and naturally abundant zeolite and minerals are proposed. Numerous low-cost catalysts such as natural zeolites and natural clays are potentially used for this purpose.

SELECTION OF CITATIONS
SEARCH DETAIL
...