Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 42(1): 112013, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36656711

ABSTRACT

Clinical sequencing efforts are rapidly identifying sarcoma gene fusions that lack functional validation. An example is the fusion of transcriptional coactivators, VGLL2-NCOA2, found in infantile rhabdomyosarcoma. To delineate VGLL2-NCOA2 tumorigenic mechanisms and identify therapeutic vulnerabilities, we implement a cross-species comparative oncology approach with zebrafish, mouse allograft, and patient samples. We find that VGLL2-NCOA2 is sufficient to generate mesenchymal tumors that display features of immature skeletal muscle and recapitulate the human disease. A subset of VGLL2-NCOA2 zebrafish tumors transcriptionally cluster with embryonic somitogenesis and identify VGLL2-NCOA2 developmental programs, including a RAS family GTPase, ARF6. In VGLL2-NCOA2 zebrafish, mouse, and patient tumors, ARF6 is highly expressed. ARF6 knockout suppresses VGLL2-NCOA2 oncogenic activity in cell culture, and, more broadly, ARF6 is overexpressed in adult and pediatric sarcomas. Our data indicate that VGLL2-NCOA2 is an oncogene that leverages developmental programs for tumorigenesis and that reactivation or persistence of ARF6 could represent a therapeutic opportunity.


Subject(s)
Rhabdomyosarcoma , Sarcoma , Child , Adult , Humans , Animals , Mice , Zebrafish/metabolism , Transcription Factors/genetics , Rhabdomyosarcoma/genetics , Rhabdomyosarcoma/pathology , Gene Fusion , Nuclear Receptor Coactivator 2/genetics , Muscle Proteins/genetics
2.
Elife ; 72018 06 05.
Article in English | MEDLINE | ID: mdl-29869612

ABSTRACT

Alveolar rhabdomyosarcoma is a pediatric soft-tissue sarcoma caused by PAX3/7-FOXO1 fusion oncogenes and is characterized by impaired skeletal muscle development. We developed human PAX3-FOXO1 -driven zebrafish models of tumorigenesis and found that PAX3-FOXO1 exhibits discrete cell lineage susceptibility and transformation. Tumors developed by 1.6-19 months and were primitive neuroectodermal tumors or rhabdomyosarcoma. We applied this PAX3-FOXO1 transgenic zebrafish model to study how PAX3-FOXO1 leverages early developmental pathways for oncogenesis and found that her3 is a unique target. Ectopic expression of the her3 human ortholog, HES3, inhibits myogenesis in zebrafish and mammalian cells, recapitulating the arrested muscle development characteristic of rhabdomyosarcoma. In patients, HES3 is overexpressed in fusion-positive versus fusion-negative tumors. Finally, HES3 overexpression is associated with reduced survival in patients in the context of the fusion. Our novel zebrafish rhabdomyosarcoma model identifies a new PAX3-FOXO1 target, her3/HES3, that contributes to impaired myogenic differentiation and has prognostic significance in human disease.


Subject(s)
Carcinogenesis/pathology , DNA-Binding Proteins/metabolism , Rhabdomyosarcoma/pathology , Transcription Factors/metabolism , Zebrafish/physiology , Animals , Carcinogenesis/genetics , Carcinogenesis/metabolism , Cell Differentiation , Cell Proliferation , Cells, Cultured , DNA-Binding Proteins/genetics , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/metabolism , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Gene Expression Regulation, Neoplastic , Humans , Mice , Muscle Development , Myoblasts/metabolism , Myoblasts/pathology , PAX3 Transcription Factor/genetics , PAX3 Transcription Factor/metabolism , Repressor Proteins , Rhabdomyosarcoma/genetics , Rhabdomyosarcoma/metabolism , Transcription Factors/genetics , Zebrafish/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...