Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Vet Res ; 81(1): 65-76, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31887090

ABSTRACT

OBJECTIVE: To evaluate the sedative and cardiorespiratory effects of IM administration of alfaxalone and butorphanol combined with acepromazine, midazolam, or dexmedetomidine in dogs. ANIMALS: 6 young healthy mixed-breed hounds. PROCEDURES: Dogs received each of 3 treatments (alfaxalone [2 mg/kg] and butorphanol [0.4 mg/kg] combined with acepromazine [0.02 mg/kg; AB-ace], midazolam [0.2 mg/kg; AB-mid], or dexmedetomidine [0.005 mg/kg; AB-dex], IM) in a blinded, randomized crossover-design study with a 1-week washout period between treatments. Sedation scores and cardiorespiratory variables were recorded at predetermined time points. Data were analyzed by use of mixed-model ANOVA and linear generalized estimating equations with post hoc adjustments. RESULTS: All treatments resulted in moderate to deep sedation (median score, ≥ 15/21) ≤ 5 minutes after injection. Sedation scores did not differ among treatments until the 40-minute time point, when the score was higher for AB-dex than for other treatments. Administration of AB-dex resulted in median scores reflecting deep sedation until 130 minutes, versus 80 and 60 minutes for AB-ace and AB-mid, respectively, after injection. Heart rate, cardiac output, and oxygen delivery decreased significantly after AB-dex, but not AB-ace or AB-mid administration. Respiratory variables remained within clinically acceptable ranges after all treatments. Undesirable recovery characteristics were observed in 4 dogs after AB-mid treatment. Four dogs required atipamezole administration 180 minutes after AB-dex injection. CONCLUSIONS AND CLINICAL RELEVANCE: All protocols produced reliable sedation. The results indicated that in young, healthy dogs, AB-mid may produce undesirable recovery characteristics; AB-dex treatment caused cardiovascular depression and should be used with caution.


Subject(s)
Anesthesia/veterinary , Anesthetics/pharmacology , Cardiovascular System/drug effects , Deep Sedation/veterinary , Injections, Intramuscular/veterinary , Acepromazine/administration & dosage , Anesthesia/adverse effects , Anesthesia/standards , Anesthetics/administration & dosage , Animals , Butorphanol/administration & dosage , Cross-Over Studies , Dexmedetomidine/administration & dosage , Dogs , Female , Heart Rate/drug effects , Hypnotics and Sedatives/adverse effects , Hypnotics and Sedatives/pharmacology , Male , Midazolam/administration & dosage , Pregnanediones/administration & dosage
2.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 10): 1273-81, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26457518

ABSTRACT

The structure of death receptor 4 (DR4) in complex with TNF-related apoptosis-inducing ligand (TRAIL) has been determined at 3 Šresolution and compared with those of previously determined DR5-TRAIL complexes. Consistent with the high sequence similarity between DR4 and DR5, the overall arrangement of the DR4-TRAIL complex does not differ substantially from that of the DR5-TRAIL complex. However, subtle differences are apparent. In addition, solution interaction studies were carried out that show differences in the thermodynamics of binding DR4 or DR5 with TRAIL.


Subject(s)
Receptors, TNF-Related Apoptosis-Inducing Ligand/chemistry , TNF-Related Apoptosis-Inducing Ligand/chemistry , Amino Acid Sequence , Calorimetry , Crystallization , Crystallography, X-Ray , Humans , Models, Molecular , Molecular Sequence Data , Protein Binding , Receptors, TNF-Related Apoptosis-Inducing Ligand/isolation & purification , TNF-Related Apoptosis-Inducing Ligand/isolation & purification , Thermodynamics
3.
Structure ; 20(2): 259-69, 2012 Feb 08.
Article in English | MEDLINE | ID: mdl-22325775

ABSTRACT

Adnectins are targeted biologics derived from the tenth type III domain of human fibronectin (¹°Fn3), a member of the immunoglobulin superfamily. Target-specific binders are selected from libraries generated by diversifying the three ¹°Fn3 loops that are analogous to the complementarity determining regions of antibodies. The crystal structures of two Adnectins were determined, each in complex with its therapeutic target, EGFR or IL-23. Both Adnectins bind different epitopes than those bound by known monoclonal antibodies. Molecular modeling suggests that some of these epitopes might not be accessible to antibodies because of the size and concave shape of the antibody combining site. In addition to interactions from the Adnectin diversified loops, residues from the N terminus and/or the ß strands interact with the target proteins in both complexes. Alanine-scanning mutagenesis confirmed the calculated binding energies of these ß strand interactions, indicating that these nonloop residues can expand the available binding footprint.


Subject(s)
ErbB Receptors/chemistry , Fibronectins/chemistry , Interleukin-23/chemistry , Peptide Fragments/chemistry , Amino Acid Sequence , Amino Acid Substitution , Crystallography, X-Ray , Fibronectins/genetics , Humans , Hydrogen Bonding , Models, Molecular , Molecular Sequence Data , Multiprotein Complexes/chemistry , Mutagenesis, Site-Directed , Peptide Fragments/genetics , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Quaternary , Protein Structure, Secondary , Structural Homology, Protein , Surface Plasmon Resonance , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...