Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Food Res Int ; 183: 114203, 2024 May.
Article in English | MEDLINE | ID: mdl-38760135

ABSTRACT

Beer is the third most consumed beverage in the world, trailing only water and tea but ranking first among alcoholic beverages. In recent years, producers and researchers have shown a growing interest in brewing diversification and innovation, due to of the widespread consumption of beer. In order to create beers and beer-like products with unique and consumer-pleasing characteristics, the use of unconventional raw materials has become a subject of intensive research. The purpose of this paper is to identify, evaluate and summarize the findings of all relevant unconventional raw materials used in relevant scientific studies, as well as the effect on the metabolomics of beer and beer-like beverages.For the enhancement of beer characteristics, the production process may involve the use of an extremely diverse variety of unconventional raw materials that are not included on thelist of usual ingredients for the beer industry. However, the general trend is to use locally available ingredients as well as functional ingredients. Twoof the most studied functional characteristics involve phenolic compounds and antioxidant activity, which is why the fruit is by far the most commonly used adjunct category, as fruits are particularly important sources of polyphenols and antioxidants. Other uncommon adjuncts used in brewing includeplants, starch sources, spices or even propolis. Moreover, unconventional raw materials are used to enhance the sensory profile by create new characteristics such as new tastes and flavors, accentuation of the cooling sensation or even increasing acceptability among potential consumers, who do not appreciate traditional beers due to their specific characteristics.


Subject(s)
Antioxidants , Beer , Metabolomics , Taste , Beer/analysis , Humans , Antioxidants/analysis , Fruit/chemistry , Polyphenols/analysis , Fermentation , Food Handling/methods
2.
Food Chem X ; 22: 101298, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38586221

ABSTRACT

This study aimed to investigate the effect of ancient wheat flour type and sourdough fermentation time on the nutritional, textural and sensorial properties of fiber-rich sourdough bread. The proximate composition, minerals, carbohydrates, organic acids, volatiles, total phenolic content, simulated gastrointestinal digestion, textural and sensorial characteristics were investigated. Bread's minerals, total phenolics, cellulose contents and radical scavenging activity variations clearly indicates an increasing trend with sourdoughs fermentation time. Compared to maltose and glucose, fructose was predominant in all bread samples. Sourdough fermentation time and wheat type had non-significant influence on fructose content from digested fraction. Excepting emmer bread, fermentation time increased in vitro digestibility values for tested samples. The crumb textural parameters (hardness, gumminess, chewiness, cohesiveness and springiness index) were positively influenced by fermentation time. The specific clustering of the analysed characteristics distinguished emmer bread from other samples in terms of volatile compounds, textural and overall acceptability, being preferred by panellists.

3.
Foods ; 13(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38611285

ABSTRACT

Polyphenols are ubiquitous by-products in many plant foods. Their intake has been linked to health benefits like the reduced incidence of cardiovascular disease, diabetes, and cancer. These bioactive compounds can be successfully extracted from Boletus edulis mushrooms with acidic water. However, such extract could influence the sensory or textural properties of the product to be enriched; this inconvenience can be avoided by microencapsulating it using spray drying. In this study, the Vienna sausages were reformulated by replacing 2% of the cured meat with microcapsules containing an acidic aqueous extract of Boletus edulis mushrooms and by replacing ice flakes, an ingredient that represents 22.9% of the manufacturing recipe, with ice cubes from the same extract aiming to obtain a polyphenol enriched product. The results showed a higher content of polyphenols in sausages with extract (VSe; 568.92 µg/g) and microcapsules (VSm; 523.03 µg/g) than in the control ones (455.41 µg/g), with significant differences for 2,4-dihydroxybenzoic acid, protocatechuic acid, and 1-O-galloyl-ß-D-glucose. However, because of the oxidative stress caused to the microcapsules by the extract's spray drying, VSm had the highest oxidation state. PV and TBARS levels varied with storage time in all formulations, but given the short period tested, they were well below the allowed/recommended limit. The extract, as such, negatively affected the appearance, odor, and taste of Vienna sausages. The microcapsules, instead, determined an increase in their acceptance rate among consumers; they also prevented moisture loss and color changes during storage. In conclusion, microcapsules are more suitable for use as a polyphenol enrichment ingredient in Vienna sausages than the extract.

4.
J Food Sci ; 89(1): 276-293, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37990837

ABSTRACT

This study examined the textural and rheological properties of Algerian honeys and margarines formulated with honey and their sensory acceptance. Textural analysis shows that all honeys and margarines enriched with honey are spreadable, easy to swallow by the consumer and to adhere to a surface (bread, teeth, tongue, etc.), and have suitable adhesiveness. The hardness and elasticity values reveal that H5 honey and its M5 margarine are less hard and regain their height more quickly. The rheological analysis reveals that all honeys and formulated margarines non-Newtonian behavior at 25 and 45°C with a G' > G″ for each type of honey except for H1 and all margarines elaborated with honey presenting a structure of a gel. Statistical analysis shows no significant differences (p > 0.05) in mean values of activation energy, suggesting that honeys and margarines need the same energy to flow. Chemometric analysis reveals strong similarities between (H3 and H5) and (M3 and M5). Sensory acceptance of margarines enriched with honey shows that M4 and M5 margarines are the most preferred by consumers with a satisfaction rate between 60% and 80%. In conclusion, margarine formulated with honey should be introduced to the market due to their good structural properties and high acceptance.


Subject(s)
Honey , Margarine , Margarine/analysis , Honey/analysis , Spectroscopy, Fourier Transform Infrared
5.
Crit Rev Food Sci Nutr ; : 1-27, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37158188

ABSTRACT

During recent years, the applicability of bi-, oleo- and emulgels has been widely studied, proving several advantages as compared to conventional fats, such as increasing the unsaturated fat content of products and being more sustainable for temperate regions as compared to tropical fats. Moreover, these alternative fat systems improve the nutritional profile, increase the bioavailability of bioactive compounds, and can be used as preservation films and markers for the inactivation of pathogens, while in 3D printing facilitate the obtaining of superior food products. Furthermore, bi-, oleo- and emulgels offer food industries efficient, innovative, and sustainable alternatives to animal fats, shortenings, margarine, palm and coconut oil due to the nutritional improvements. According to recent studies, gels can be used as ingredients for the total or partial replacement of saturated and trans fats in the meat, bakery and pastry industry. The evaluation of the oxidative quality of this gelled systems is significant because the production process involves the use of heat treatments and continuous stirring where large amounts of air can be incorporated. The aim of this literature review is to provide a synthesis of studies to better understand the interaction of components and to identify future improvements that can be applied in oil gelling technology. Generally, higher temperatures used in obtaining polymeric gels, lead to more oxidation compounds, while a higher concentration of structuring agents leads to a better protection against oxidation. Due to the gel network ability to function as a barrier against oxidation factors, gelled matrices are able to provide superior protection for the bioactive compounds. The release percentage of bioactive molecules can be regulated by formulating the gel matrix (type and concentration of structuring agents and type of oil). In terms of food products, future research may include the use of antioxidants to improve the oxidative stability of the reformulated products.

6.
Foods ; 12(5)2023 Mar 04.
Article in English | MEDLINE | ID: mdl-36900613

ABSTRACT

The continuous development of bakery products as well as the increased demands from consumers transform ancient grains into alternatives with high nutritional potential for modern wheat species. The present study, therefore, follows the changes that occur in the sourdough obtained from these vegetable matrices fermented by Lactiplantibacillus plantarum ATCC 8014 during a 24 h. period. The samples were analyzed in terms of cell growth dynamics, carbohydrate content, crude cellulose, minerals, organic acids, volatile compounds, and rheological properties. The results revealed significant microbial growth in all samples, with an average value of 9 log cfu/g but also a high accumulation of organic acids with the increase in the fermentation period. Lactic acid content ranged from 2.89 to 6.65 mg/g, while acetic acid recorded values between 0.51 and 1.1 mg/g. Regarding the content of simple sugars, maltose was converted into glucose, and fructose was used as an electron acceptor or carbon source. Cellulose content decreased as a result of the solubilization of soluble fibers into insoluble fibers under enzymatic action, with percentages of 3.8 to 9.5%. All sourdough samples had a high content of minerals; the highest of which-Ca (246 mg/kg), Zn (36 mg/kg), Mn (46 mg/kg), and Fe (19 mg/kg)-were recorded in the einkorn sourdough.

7.
J Sci Food Agric ; 103(2): 680-691, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36053837

ABSTRACT

BACKGROUND: Pumpkin seed and sunflower oil are rich in bioactive compounds, but are prone to oxidation during storage. Their fatty acids, carotenoid and volatile compounds and their Fourier-transform infrared (FTIR) profiles were studied during 8 months storage in order to assess the overall quality, but also to assess the impact of the oleogelation as conditioning process. RESULTS: The fatty acids methyl esters were analyzed by gas chromatography-mass spectrometry (GC-MS). The linoleic acid was the most abundant in the oils (604.6 g kg-1 in pumpkin and 690 g kg-1 in sunflower), but also in oleogels. Through high-performance liquid chromatography (HPLC), lutein and ß-carotene were determined as specific carotenoid compounds of the pumpkin seed oil and oleogel, in a total amount of 0.0072 g kg-1 . The volatile compounds profile revealed the presence of alpha-pinene for the pumpkin seed oil and oleogels and a tentative identification of limonene for the sunflower oil. Hexanal was also detected in the oleogels, indicating a thermal oxidation, which was further analyzed through infrared spectroscopy. CONCLUSIONS: During 8 months storage, the decrease of polyunsaturated fatty acid total amount was 5.72% for the pumpkin seed oil and 3.55% for the oleogel, while in the sunflower oil samples of 2.93% and 3.28% for the oleogel. It was concluded that oleogelation might protect specific carotenoid compounds, since the oleogels displayed higher content of ß-carotene at each storage time. Hexanal and heptanal were detected during storage, regardless of the oil or oleogel type. FTIR analysis depicts the differences in the constituent fatty acids resulting due to thermal oxidation or due to storage. © 2022 Society of Chemical Industry.


Subject(s)
Cucurbita , Cucurbita/chemistry , Fatty Acids/chemistry , Carotenoids/analysis , Sunflower Oil/analysis , beta Carotene/analysis , Seeds/chemistry , Plant Oils/chemistry , Aldehydes/analysis
8.
Foods ; 11(22)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36429308

ABSTRACT

Fermented chili powders were obtained through the freeze-drying of fermented chili pastes and used as a condiment, acidifier, antioxidant, colorant, and microbial starter carrier in fermented salami production. Fermented chili powders were examined regarding carbohydrates, organic acids, vitamin C, phenolic compounds, carotenoids, and aroma profile. High concentrations of lactic (10.57-12.20%) and acetic acids (3.39-4.10%) were recorded. Vitamin C content was identified in the range of 398-1107 mg/100 g, with maximum values for C. annuum cv. Cayenne chili powder. Phenolic compounds showed values between 302-771 mg/100 g. Total carotenoid content was identified between 544-2462 µg/g, with high concentrations of capsanthin esters. Aroma profile analysis evidenced specific compounds (1-hexanol, 2-hexanol, hexenal, E-2-hexenal) with sensory importance and a more complex spectrum for Capsicum chinense cultivar. Plant-specific lactic acid bacteria showed dominance both in fermented chili paste, chili powder, and salami. Lactic and acetic acids from the fermented chili powder reduced the pH of the filling immediately, having a stabilizing effect on the meat. Nor molds or pathogens were identified in outer limits. Based on these results, fermented chili powders could be used as starter carriers in the production of fermented meat products for exceptional sensory properties and food safety management.

9.
Gels ; 8(10)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36286114

ABSTRACT

A breakfast spread named chocolate butter exists on the market. For economic and technological reasons, cream in the original recipe is replaced with vegetable oils such as palm oil or by partially hydrogenated sunflower oil. The study aims to reformulate chocolate flavor butter, using cold pressed walnut oil (WO) oleogels (OGs) structured with 10% waxes and monoglyceride (MG), as a milk fat replacing system. The rheological, textural and microscopic characteristics of the oleogels and the spreads were compared. Oil binding capacity (OBC) and colorimetry were also assessed. Fourier transform infrared studies were used to monitor the composition of the samples. Oleogels and oleogel based chocolate butter behaved like strong gels (G' > G"). The use of candelilla wax (CW) led to the formation of a much firmer spread (S-CW), with a hardness of 3521 g and G'LVR of 139,920 Pa, while the monoglyceride-based spread (S-MG) registered a hardness of 1136 g and G'LVR 89,952 Pa. In the spreadability test, S-CW registered a hardness of 3376 g and hardness work of 113 mJ, comparable to the commercially available chocolate butter. The formulated spreads exhibited shear thinning effects, and increased viscosity with decreasing temperature. A large round peak at 3340 cm−1 was present in the spectra of the candelilla wax-based oleogel (OG-CW) and the reference spreads due to hydrogen bonding, but was absent in S-CW or S-MG. The FTIR spectra of the alternative spreads exhibited the same peaks as the WO and the oleogels, but with differences in the intensities. S-CW exhibited a dense crystal network, with spherulitic crystals of 0.66−1.73 µm, which were statistically similar to those of the reference made from cream (S-cream). S-MG exhibited the lowest stability upon centrifugation, with an OBC of 99.76%. Overall, both oleogel-based chocolate spreads can mimic the properties of the commercially existing chocolate butter references.

10.
Gels ; 8(5)2022 May 19.
Article in English | MEDLINE | ID: mdl-35621615

ABSTRACT

The current trend is represented by replacing solid fats with structured liquid oil while maintaining the plastic properties of food products. In this study, the behavior of refined sunflower oil structured with various agents (carnauba wax-CRW, ß-sitosterol:beeswax-BS:BW, ß-sitosterol:lecithin-BS:LEC, and glycerol monostearate-GM) was evaluated in the process dynamics of oleogel-based tender dough products. The oleogel with the mixture of ß-sitosterol:beeswax (OG_BS:BW) displayed the highest capacity to retain oil inside the matrix with a percentage of oil loss as low as 0.05% and also had a significantly higher hardness (6.37 N) than the reference, a commercial margarine (MR-3.58 N). During cooling from 90 to 4 °C, the increase in oleogel' viscosity results from oleogelator's liquid-solid phase transition. As demonstrated by the frequency sweeps performed, storage modulus G' was higher than loss modulus G″, no cross-over points were observed, and the strongest gel network was for the oleogel with glycerol monostearate (OG_GM). Regarding the dough, the sample prepared using the oleogel with carnauba wax (D_CRW) showed the strongest hardness (92.49 N) compared to the reference (D_MR-21.80 N). All the oleogel-containing doughs had elastic solid-like behavior. The samples with margarine (D_MR) and the mixture of ß-sitosterol:lecithin (D_BS:LEC) presented the lowest value of both moduli of G' and G" during the frequency sweep. The biscuits formulated with commercial margarine (B_MR) registered a hardness of 28.74 N. Samples with oleogels showed a specific tenderness for tender dough products, thus being suitable for this type of product (11.22-20.97 N).

11.
Plants (Basel) ; 11(8)2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35448810

ABSTRACT

The avocado seed is an underused waste resulting from the processing of pulp. Polyphenols, fibers, and carotenoids are present in the seed, which also exhibits prophylactic, fungicidal, and larvicidal effects. Developing food products with avocado seed as an ingredient or spice is highly desired for nutritional, environmental, and economic reasons. The present study proposed its valorization in a hot drink, similar to already existing coffee alternatives, obtained by infusing the roasted and grinded avocado seed. The proximate composition of the raw or conditioned avocado seed and that of the novel drink were determined. The total phenolic content was assessed using the Folin-Ciocâlteu method. The total carotenoids were extracted and assessed spectrophotometrically. Starch determination was performed by the Ewers Polarimetric method. The highest content of polyphenols, 772.90 mg GAE/100 g, was determined in the crude seed, while in the drink was as low as 17.55 mg GAE/100 g. However, the proposed drink demonstrated high antioxidant capacity, evaluated through the DPPH method. This might be due to the high content of the total carotenoid compounds determined in the roasted seed (6534.48 µg/100 g). The proposed drink demonstrated high antiproliferative activity on Hs27 and DLD-1 cell lines.

12.
Plants (Basel) ; 11(7)2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35406940

ABSTRACT

Aromatic and spicy plants are an important factor that contributes not only to improving the taste of meat, meat products, and meat analogues, but also to increasing the nutritional value of the products to which they are added. The aim of this paper is to present the latest information on the bioactive antioxidant and antimicrobial properties of the most commonly used herbs and spices (parsley, dill, basil, oregano, sage, coriander, rosemary, marjoram, tarragon, bay, thyme, and mint) used in the meat and meat analogues industry, or proposed to be used for meat analogues.

13.
Foods ; 10(9)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34574122

ABSTRACT

Beef aging is one of the most common methods used for improving its qualities. The main goal of the present study was to analyse the influence of different cold pressed oils and aromatic herbs during marination process on the nutritional, textural, and sensory attributes of the final grilled sirloin samples. In order to fulfil this goal, methods like GC-MS, HPLC/DAD/ESI-MS, HLPC-RID were performed to quantify fatty acids, phenolic acids, and organic acids, respectively. Textural and sensory analysis were performed with CT 3 Texture Analyser and hedonic test. The results showed high improvement of the meat grilled samples regarding the content of phenolic acids, and textural and sensory characteristics. Pearson values indicate strong positive correlations between raw and grilled samples regarding their content in phenolic acids. Hardness, chewiness, gumminess decreased during marination, meanwhile, resilience, and cohesiveness increased. Sensory analysis highlighted that meat samples marinated with olive oil and rosemary for 120 h reached the highest hedonic score among the tested samples.

14.
Antioxidants (Basel) ; 10(7)2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34356325

ABSTRACT

Elderberry growth phases represent an irreversible process involving a series of biochemical changes that have an extremely important impact on nutritional characteristics. The aim was to assess the impact of genotype and maturity stage on phenolic compounds, antioxidant capacity and mineral profile in Sambucus plants harvested during different growth phases, from green elder flower buds to purple-black elderberries, including pollen, peduncles and seeds. Growth phases proved to have a greater influence compared to varieties. The green buds and flowers of both varieties had a high concentration of quercetin 3-rutinoside, also termed the key compound of the study. It was found that antioxidant activity varied in the following order: blooming elder flower pollen > white elder flower buds > blooming elder flowers. Based on these findings, several novel food ingredients and supplements could be obtained in order to develop innovative health-promoting products.

15.
Int J Mol Sci ; 22(16)2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34445648

ABSTRACT

Wheat (Triticum aestivum) is one of the most extensively cultivated and used staple crops in human nutrition, while wheat bread is annually consumed in more than nine billion kilograms over the world. Consumers' purchase decisions on wheat bread are largely influenced by its nutritional and sensorial characteristics. In the last decades, metabolomics is considered an effective tool for elucidating the information on metabolites; however, the deep investigations on metabolites still remain a difficult and longtime action. This review gives emphasis on the achievements in wheat bread metabolomics by highlighting targeted and untargeted analyses used in this field. The metabolomics approaches are discussed in terms of quality, processing and safety of wheat and bread, while the molecular mechanisms involved in the sensorial and nutritional characteristics of wheat bread are pointed out. These aspects are of crucial importance in the context of new consumers' demands on healthy bakery products rich in bioactive compounds but, equally, with good sensorial acceptance. Moreover, metabolomics is a potential tool for assessing the changes in nutrient composition from breeding to processing, while monitoring and understanding the transformations of metabolites with bioactive properties, as well as the formation of compounds like toxins during wheat storage.


Subject(s)
Bread/analysis , Flour/analysis , Metabolome , Nutritive Value , Quality Control , Triticum/metabolism , Triticum/growth & development
16.
Polymers (Basel) ; 13(12)2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34200945

ABSTRACT

Numerous empirical studies have already been conducted on the innovative fat-replacing system defined as oleogel, creating a real urge for setting up a framework for future research, rather than conducting studies with arbitrary methods. This study re-evaluates the utility of some analyses and states some conclusions in order to eliminate the reluctance of food processors and consumers towards the utilization of oleogels as ingredients. The review presents extensively the methods applied for the characterization of various oleogels, while highlighting their addressability or inconveniences. The discussed methods were documented from the research published in the last five years. A classification of the methods is proposed based on their aims or the utility of the results, which either describe the nano-structure and the network formation, the quality of the resulting oleogel or its suitability as food ingredient or other edible purposes. The general conclusions drawn for some classes of oleogels were also revisited, in order to ease the understanding of the oleogel behaviour, to encourage innovative research approaches and to stimulate the progress in the state of art of knowledge.

17.
Foods ; 10(6)2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34198688

ABSTRACT

The issue of the adverse effects of trans-fatty acids has become more transparent in recent years due to researched evidence of their link with coronary diseases, obesity or type 2 diabetes. Apart from conventional techniques for lipid structuring, novel nonconventional approaches for the same matter, such as enzymatic interesterification, genetic modification, oleogelation or using components from nonlipid origins such as fat replacers have been proposed, leading to a product with a healthier nutritional profile (low in saturated fats, zero trans fats and high in polyunsaturated fats). However, replacing conventional fat with a structured lipid or with a fat mimetic can alternate some of the technological operations or the food quality impeding consumers' acceptance. In this review, we summarize the research of the different existing methods (including conventional and nonconventional) for tailoring lipids in order to give a concise and critical overview in the field. Specifically, raw materials, methods for their production and the potential of food application, together with the properties of new product formulations, have been discussed. Future perspectives, such as the possibility of bioengineering approaches and the valorization of industrial side streams in the framework of Green Production and Circular Economy in the production of tailored lipids, have been highlighted. Additionally, a schematic diagram classifying conventional and nonconventional techniques is proposed based on the processing steps included in tailored lipid production as a convenient and straightforward tool for research and industry searching for healthy, sustainable and zero trans edible lipid system alternatives.

18.
Molecules ; 25(9)2020 May 08.
Article in English | MEDLINE | ID: mdl-32397336

ABSTRACT

Walnut oilcake is a low-cost by-product of the edible oil industry but at the same time it is a valuable source of dietary fiber, natural antioxidants, and polyunsaturated fatty acids. In the context of health-friendly confectionary food products and to reduce the production cost, the aim of this study was to investigate the effect of walnut oilcake by-product on the quality characteristics and volatile profile of modified macarons. For this purpose, GC-MS and ITEX/GC-MS techniques were used to obtain the fatty acids methyl esters and the volatile profiles; physicochemical analyzes were performed to determine the nutritional characteristics and a nine-point hedonic scale test was performed for the sensory characteristics. The substitution of almond flour with 0%, 10%, 25% and 50% walnut oilcake powder increased the fiber, total phenolic content, and antioxidant capacity. Hedonic scores of the macaron samples made with different percentage of walnut oilcake decreased to additions of over 10%. Moreover, this result is emphasized by Pearson's correlation parameters indicating as optimal addition for modified macarons, percentages up to 10% of walnut oilcake. This approach could reduce the costs related to the acquisition of the ingredients due to the oilcake price which is 3% of the almonds flour price.


Subject(s)
Fatty Acids, Volatile/chemistry , Juglans/chemistry , Plant Oils/chemistry , Flour
19.
Polymers (Basel) ; 12(3)2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32131384

ABSTRACT

In the current work the physicochemical features of poly(vinyl alcohol) (PVOH) biofilms, enriched with eco-friendly polyols and with carotenoid-rich extracts, were investigated. The polyols, such as glycerol (Gly), 1,3-propanediol (PDO), and 2,3-butanediol (BDO) were used as plasticizers and the tomato-based pigments (TP) as coloring agents. The outcomes showed that ß-carotene was the major carotenoid in the TP (1.605 mg ß-carotene/100 DW), which imprinted the orange color to the biofilms. The flow behavior indicated that with the increase of shear rate the viscosity of biofilm solutions also increased until 50 s-1, reaching values at 37 °C of approximately 9 ± 0.5 mPa·s for PVOH, and for PVOH+TP, 14 ± 0.5 mPa·s in combination with Gly, PDO, and BDO. The weight, thickness, and density of samples increased with the addition of polyols and TP. Biofilms with TP had lower transparency values compared with control biofilms (without vegetal pigments). The presence of BDO, especially, but also of PDO and glycerol in biofilms created strong bonds within the PVOH matrix by increasing their mechanical resistance. The novelty of the present approach relies on the replacement of synthetic colorants with natural pigments derived from agro-industrial by-products, and the use of a combination of biodegradable polymers and polyols, as an integrated solution for packaging application in the bioplastic industry.

20.
Foods ; 9(1)2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31936353

ABSTRACT

Legislative limitations of the use of trans and saturated fatty acids, the rising concerns among consumers about the negative effects of some fats on human health, and environmental and health considerations regarding the increased use of palm fat in food and biodiesel production drove to innovations in reformulating fat-containing food products. Oleogelation is one of the most in-trend methods for reducing or replacing the unhealthy and controversial fats in food products. Different edible oleogels are being formulated by various techniques and used in spreads, bakeries, confectioneries, and dairy and meat products. This review exclusively focuses on up-to-date applications of oleogels in food and mechanisms of gelation, and discusses the properties of new products. Research has produced acceptable reformulated food products with similar technological and rheological properties as the reference products or even products with improved techno-functionality; however, there is still a high need to improve oleogelation methods, as well as the technological process of oleogel-based foods products. Despite other strategies that aim to reduce or replace the occurrence of trans and saturated fats in food, oleogelation presents a great potential for industrial application in the future due to nutritional and environmental considerations.

SELECTION OF CITATIONS
SEARCH DETAIL
...