Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pestic Biochem Physiol ; 189: 105296, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36549822

ABSTRACT

Microtransplantation of neurolemma tissue fragments from mammalian brain into the plasma membrane of Xenopus laevis oocytes is a tool to examine the endogenous structure and function of various ion channels and receptors associated with the central nervous system. Microtransplanted neurolemma can originate from a variety of sources, contain ion channels and receptors in their native configuration, and are applicable to examine diseases associated with different channelopathies. Here, we examined potential age-related differences in voltage-sensitive sodium channel (VSSC) expression and concentration-dependent responses to pyrethroids following the microtransplantation of juvenile or adult rat brain tissue (neurolemma) into X. laevis oocytes. Using automated western blotting, adult neurolemma exhibited a 2.5-fold higher level of expression of VSSCs compared with juvenile neurolemma. The predominant isoform expressed in both tissues was Nav1.2. However, adult neurolemma expressed 2.8-fold more Nav1.2 than juvenile and expressed Nav1.6 at a significantly higher level (2.2-fold). Microtransplanted neurolemma elicited ion currents across the plasma membrane of oocytes following membrane depolarization using two electrode voltage clamp electrophysiology. A portion of this current was sensitive to tetrodotoxin (TTX) and this TTX-sensitive current was abolished when external sodium ion was replaced by choline ion, functionally demonstrating the presence of native VSSC. Increasing concentrations of permethrin or deltamethrin exhibited concentration-dependent increases in inward TTX-sensitive current in the presence of niflumic acid from both adult and juvenile tissues following a pulsed depolarization of the oocyte plasma membrane. Concentration-dependent response curves illustrate that VSSCs associated with juvenile neurolemma were up to 2.5-fold more sensitive to deltamethrin than VSSCs in adult neurolemma. In contrast, VSSCs from juvenile neurolemma were less sensitive to permethrin than adult VSSCs at lower concentrations (0.6-0.8-fold) but were more sensitive at higher concentrations (up to 2.4-fold). Nonetheless, because the expected concentrations in human brains following realistic exposure levels are approximately 21- (deltamethrin) to 333- (permethrin) times below the threshold concentration for response in rat neurolemma-injected oocytes, age-related differences, if any, are not likely to be toxicologically relevant.


Subject(s)
Insecticides , Pyrethrins , Rats , Animals , Humans , Insecticides/toxicity , Insecticides/chemistry , Permethrin/toxicity , Sodium Channels/metabolism , Pyrethrins/toxicity , Pyrethrins/chemistry , Ion Channels/metabolism , Oocytes/metabolism , Brain/metabolism , Xenopus laevis/metabolism , Mammals/metabolism
2.
Neurotoxicology ; 60: 260-273, 2017 May.
Article in English | MEDLINE | ID: mdl-27063102

ABSTRACT

Microtransplantation of mammalian brain neurolemma into the plasma membrane of Xenopus oocytes is used to study ion channels in their native form as they appear in the central nervous system. Use of microtransplanted neurolemma is advantageous for various reasons: tissue can be obtained from various sources and at different developmental stages; ion channels and receptors are present in their native configuration in their proper lipid environment along with appropriate auxiliary subunits; allowing the evaluation of numerous channelpathies caused by neurotoxicants in an ex vivo state. Here we show that Xenopus oocytes injected with post-natal day 90 (PND90) rat brain neurolemma fragments successfully express functional ion channels. Using a high throughput two electrode voltage clamp (TEVC) electrophysiological system, currents that were sensitive to tetrodotoxin, ω-conotoxin MVIIC, and tetraethylammonium were detected, indicating the presence of multiple voltage-sensitive ion channels (voltage-sensitive sodium (VSSC), calcium and potassium channels, respectively). The protein expression pattern for nine different VSSC isoforms (Nav1.1-Nav1.9) was determined in neurolemma using automated western blotting, with the predominant isoforms expressed being Nav1.2 and Nav1.6. VSSC were also successfully detected in the plasma membrane of Xenopus oocytes microtransplanted with neurolemma. Using this approach, a "proof-of-principle" experiment was conducted where a well-established structure-activity relationship between the neurotoxicant, 1,1,1-trichloro-2,2-di(4-chlorophenyl)ethane (DDT) and its non-neurotoxic metabolite, 1,1-bis-(4-chlorophenyl)-2,2-dichloroethene (DDE) was examined. A differential sensitivity of DDT and DDE on neurolemma-injected oocytes was determined where DDT elicited a concentration-dependent increase in TTX-sensitive inward sodium current upon pulse-depolarization whereas DDE resulted in no significant effect. Additionally, DDT resulted in a slowing of sodium channel inactivation kinetics whereas DDE was without effect. These results are consistent with the findings obtained using heterologous expression of single isoforms of rat brain VSSCs in Xenopus oocytes and with many other electrophysiological approaches, validating the use of the microtransplantation procedure as a toxicologically-relevant ex vivo assay. Once fully characterized, it is likely that this approach could be expanded to study the role of environmental toxicants and contaminants on various target tissues (e.g. neural, reproductive, developmental) from many species.


Subject(s)
Brain Tissue Transplantation/methods , Drug Evaluation, Preclinical/methods , Neurilemma/transplantation , Oocytes/drug effects , Toxicology/methods , Voltage-Gated Sodium Channels/pharmacology , Animals , Female , Ion Channels/metabolism , Ion Channels/pharmacology , Oocytes/metabolism , Rats, Sprague-Dawley , Transplantation, Heterologous/methods , Voltage-Gated Sodium Channels/physiology , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...