Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 11(11)2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35684293

ABSTRACT

A meta-analysis was carried out on published literature covering the topic of interactive plant microbiology for botanical species of legumes occurring within the boundary of the Italian island Sardinia, lying between the Tyrrhenian and the western Mediterranean seas. Reports were screened for the description of three types of bacterial occurrences; namely, (a) the nitrogen-fixing symbionts dwelling in root nodules; (b) other bacteria co-hosted in nodules but having the ancillary nature of endophytes; (c) other endophytes isolated from different non-nodular portions of the legume plants. For 105 plant species or subspecies, over a total of 290 valid taxonomical descriptions of bacteria belonging to either one or more of these three categories were found, yielding 85 taxa of symbionts, 142 taxa of endophytes in nodules, and 33 in other plant parts. The most frequent cases were within the Medicago, Trifolium, Lotus, Phaseolus, and Vicia genera, the majority of symbionts belonged to the Rhizobium, Mesorhizobium, Bradyrhizobium, and Sinorhizobium taxa. Both nodular and extra-nodular endophytes were highly represented by Gammaproteobacteria (Pseudomonas, Enterobacter, Pantoea) and Firmicutes (Bacillus, Paenibacillus), along with a surprisingly high diversity of the Actinobacteria genus Micromonospora. The most plant-promiscuous bacteria were Sinorhizobium meliloti as symbiont and Bacillus megaterium as endophyte. In addition to the microbial analyses we introduce a practical user-friendly software tool for plant taxonomy determination working in a Microsoft Excel spreadsheet that we have purposely elaborated for the classification of legume species of Sardinia. Its principle is based on subtractive keys that progressively filter off the plants that do not comply with the observed features, eventually leaving only the name of the specimen under examination.

2.
Microorganisms ; 9(2)2021 Feb 16.
Article in English | MEDLINE | ID: mdl-33669391

ABSTRACT

Pangenome analyses reveal major clues on evolutionary instances and critical genome core conservation. The order Rhizobiales encompasses several families with rather disparate ecological attitudes. Among them, Rhizobiaceae, Bradyrhizobiaceae, Phyllobacteriacreae and Xanthobacteriaceae, include members proficient in mutualistic symbioses with plants based on the bacterial conversion of N2 into ammonia (nitrogen-fixation). The pangenome of 12 nitrogen-fixing plant symbionts of the Rhizobiales was analyzed yielding total 37,364 loci, with a core genome constituting 700 genes. The percentage of core genes averaged 10.2% over single genomes, and between 5% to 7% were found to be plasmid-associated. The comparison between a representative reference genome and the core genome subset, showed the core genome highly enriched in genes for macromolecule metabolism, ribosomal constituents and overall translation machinery, while membrane/periplasm-associated genes, and transport domains resulted under-represented. The analysis of protein functions revealed that between 1.7% and 4.9% of core proteins could putatively have different functions.

3.
Front Plant Sci ; 10: 1256, 2019.
Article in English | MEDLINE | ID: mdl-31649712

ABSTRACT

Endophytism within Vitis represents a topic of critical relevance due to the multiple standpoints from which it can be approached and considered. From the biological and botanical perspectives, the interaction between microorganisms and perennial woody plants falls within the category of stable relationships from which the plants can benefit in multiple ways. The life cycle of the host ensures persistence in all seasons, repeated chances of contact, and consequent microbiota accumulation over time, leading to potentially high diversity compared with that of herbaceous short-lived plants. Furthermore, grapevines are agriculturally exploited, highly selected germplasms where a profound man-driven footprint has indirectly and unconsciously shaped the inner microbiota through centuries of cultivation and breeding. Moreover, since endophyte metabolism can contribute to that of the plant host and its fruits' biochemical composition, the nature of grapevine endophytic taxa identities, ecological attitudes, potential toxicity, and clinical relevance are aspects worthy of a thorough investigation. Can endophytic taxa efficiently defend grapevines by acting against pests or confer enough fitness to the plants to endure attacks? What are the underlying mechanisms that translate into this or other advantages in the hosting plant? Can endophytes partially redirect plant metabolism, and to what extent do they act by releasing active products? Is the inner microbial colonization necessary priming for a cascade of actions? Are there defined environmental conditions that can trigger the unleashing of key microbial phenotypes? What is the environmental role in providing the ground biodiversity by which the plant can recruit microsymbionts? How much and by what practices and strategies can these symbioses be managed, applied, and directed to achieve the goal of a better sustainable viticulture? By thoroughly reviewing the available literature in the field and critically examining the data and perspectives, the above issues are discussed.

4.
Microbiol Res ; 221: 10-14, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30825937

ABSTRACT

The culturable bacteria from root nodules of Sulla coronaria growing in spontaneous conditions in Sardinia were characterized. This plant's peculiarity is to represent a legume still found in both wild and cropped statuses. We tested whether culturable bacteria would differ from those commonly isolated from its field-cropped varieties, to date exclusively represented by Rhizobium sullae. 63 isolates from 60 surface-sterilized nodules were analyzed by ARDRA and 16S rDNA sequencing. The official nitrogen-fixing symbiont Rhizobium sullae was found only in 25 nodules out of 60. The remaining nodules did not yield culturable rhizobia but a number of different endophytic genera including Pseudomonas sp. (17 nodules), Microbacterium sp. (15 nodules), Pantoea agglomerans (5 nodules). The situation appears therefore a hybrid between what is commonly observed in other Mediterranean legumes occurring only in wild status (featuring non-culturable rhizobia and arrays of culturable endophytes within nodules), as opposed to cropped legumes (endowed with fully culturable rhizobia and minimal endophytic occurrence). These findings, within a species bridging the ecology between native and cropped conditions, suggest insights on the relative importance of endophytic co-occupancy vs. true N-fixing symbiont culturability within nodules. The latter trait thus appears to accompany the domestication path of plants with a main trade-off of renouncing to interactions with a diversity of endophytic co-invaders; the relationships with those being critical in the non-cropped status. In fact, endophytes are known to promote plant growth in harsh conditions, which can be particularly stressful in the Mediterranean due to drought, highly calcareous soils, and pathogens outbreaks.


Subject(s)
Endophytes/isolation & purification , Fabaceae/microbiology , Rhizobium/isolation & purification , Root Nodules, Plant/microbiology , Actinobacteria/classification , Actinobacteria/genetics , Actinobacteria/isolation & purification , Endophytes/classification , Endophytes/genetics , Microbiota , Pantoea/genetics , Pantoea/isolation & purification , Pseudomonas/classification , Pseudomonas/genetics , Pseudomonas/isolation & purification , RNA, Ribosomal, 16S/genetics , Rhizobium/classification , Rhizobium/genetics , Sequence Analysis, DNA , Symbiosis
5.
Front Microbiol ; 8: 1348, 2017.
Article in English | MEDLINE | ID: mdl-28798728

ABSTRACT

The prominent feature of rhizobia is their molecular dialogue with plant hosts. Such interaction is enabled by the presence of a series of symbiotic genes encoding for the synthesis and export of signals triggering organogenetic and physiological responses in the plant. The genome of the Rhizobium sullae type strain IS123T nodulating the legume Hedysarum coronarium, was sequenced and resulted in 317 scaffolds for a total assembled size of 7,889,576 bp. Its features were compared with those of genomes from rhizobia representing an increasing gradient of taxonomical distance, from a conspecific isolate (Rhizobium sullae WSM1592), to two congeneric cases (Rhizobium leguminosarum bv. viciae and Rhizobium etli) and up to different genera within the legume-nodulating taxa. The host plant is of agricultural importance, but, unlike the majority of other domesticated plant species, it is able to survive quite well in the wild. Data showed that that the type strain of R. sullae, isolated from a wild host specimen, is endowed with a richer array of symbiotic genes in comparison to other strains, species or genera of rhizobia that were rescued from domesticated plant ecotypes. The analysis revealed that the bacterium by itself is incapable of surviving in the extreme conditions that its host plant can tolerate. When exposed to drought or alkaline condition, the bacterium depends on its host to survive. Data are consistent with the view of the plant phenotype as the primary factor enabling symbiotic nitrogen fixing bacteria to survive in otherwise limiting environments.

6.
Sci Rep ; 5: 16306, 2015 Nov 06.
Article in English | MEDLINE | ID: mdl-26542754

ABSTRACT

Dust particles lifting and discharge from Africa to Europe is a recurring phenomenon linked to air circulation conditions. The possibility that microorganisms are conveyed across distances entails important consequences in terms of biosafety and pathogens spread. Using culture independent DNA-based analyses via next generation sequencing of the 16 S genes from the airborne metagenome, the atmospheric microbial community was characterized and the hypothesis was tested that shifts in species diversity could be recorded in relation to dust discharge. As sampling ground the island of Sardinia was chosen, being an ideal cornerstone within the Mediterranean and a crossroad of wind circulation amidst Europe and Africa. Samples were collected in two opposite coastal sites and in two different weather conditions comparing dust-conveying winds from Africa with a control situation with winds from Europe. A major conserved core microbiome was evidenced but increases in species richness and presence of specific taxa were nevertheless observed in relation to each wind regime. Taxa which can feature strains with clinical implications were also detected. The approach is reported as a recommended model monitoring procedure for early warning alerts in frameworks of biosafety against natural spread of clinical microbiota across countries as well as to prevent bacteriological warfare.


Subject(s)
Air Microbiology , Dust , Climate , Cluster Analysis , Mediterranean Sea , Phylogeny , Principal Component Analysis , RNA, Ribosomal, 16S/genetics
7.
Arch Microbiol ; 195(6): 385-91, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23572182

ABSTRACT

In many wild legumes, attempts to cultivate nodule bacteria fail. We hypothesized that the limited culturability could be related to injury from oxidative stress caused by disruption of plant tissues during isolation. To test that, we isolated bacteria from nodules of Hedysarum spinosissimum and Tetragonolobus purpureus using buffers supplemented with scavenging systems to prevent damage from reactive oxygen species (ROS). Treatments included the following: antioxidants (glutathione, ascorbate, EDTA) or enzymes (catalase, peroxidase, superoxide dismutase), tested either as modified squashing buffers or added in plates. Some combinations yielded dramatic increases of culturability. Different endophytes were found, including additional Rhizobiaceae that were not the primary symbiont and were unable to nodulate. Their H2O2 tolerance in broth culture showed differences consistent with the unequal culturability observed. In wild legumes species, ROS generation during extraction appears to be a major factor limiting microbiota isolation, and protocols presented here significantly improve the recovery of culturable bacterial endophytes from plants.


Subject(s)
Fabaceae/microbiology , Rhizobiaceae/growth & development , Rhizobiaceae/isolation & purification , Antioxidants/metabolism , Culture Media/chemistry , Endophytes/growth & development , Endophytes/isolation & purification , Hydrogen Peroxide/metabolism , Oxidative Stress , Oxidoreductases/metabolism
8.
Arch Microbiol ; 193(2): 115-24, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21082309

ABSTRACT

Eighteen isolates of rhizobia isolated from root nodules of Colutea arborescens (Bladder senna) grown in different soils of the eastern area of Morocco were characterized by phenotypic and genomic analyses. All the isolates characterized were fast growers. This is may be due to the isolation procedures used. The phenotypic, symbiotic and cultural characteristics analyzed allowed the description of a wide physiological diversity among tested isolates. The results obtained suggest that the phenotype of these rhizobia might have convergent evolved to adapt the local conditions. The genetic characterization consisted in an analysis of the rep-PCR fingerprints and the PCR-based RFLP of the 16S rDNA patterns. The 16S rDNA of six isolates representing the main ribotypes obtained by the PCR-based RFLP was sequenced. A large diversity was observed among these rhizobia, and they were classified as different species of the genera Rhizobium, Sinorhizobium and Mesorhizobium. The nodC gene was also sequenced, and the results confirmed the three lineages corresponding to the three genera. The results of the sequencing of nodC and 16S rDNA genes suggest that the nodulation genes and chromosome might have co-evolved among these bacteria.


Subject(s)
Bacteria/classification , Fabaceae/microbiology , Alphaproteobacteria/classification , Alphaproteobacteria/genetics , Alphaproteobacteria/isolation & purification , DNA, Bacterial/chemistry , Genetic Variation , Morocco , Phenotype , Plant Root Nodulation , Plant Roots/microbiology , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , RNA, Ribosomal, 16S/genetics , Rhizobium/classification , Rhizobium/genetics , Rhizobium/isolation & purification , Sinorhizobium/classification , Sinorhizobium/genetics , Sinorhizobium/isolation & purification , Symbiosis
9.
Antonie Van Leeuwenhoek ; 97(2): 143-53, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19916054

ABSTRACT

Bacteria not proficient in nitrogen fixing symbiosis were proven able to invade root nodules of three wild legumes of the genus Hedysarum in Algeria and to be multiplying in these in place of the natural rhizobium symbionts. The involved species featured taxa known as human pathogens including: Enterobacter cloacae, Enterobacter kobei, Escherichia vulneris, Pantoea agglomerans and Leclercia adecarboxylata. A direct screening of the phenotypic determinants of virulence using human cultured cells tested positive for the traits of cytotoxicity, vital stain exclusion and adhesion to epithelia. Antibiogram analyses revealed also a complex pattern of multiple antibiotic resistances. The data suggest that legume root nodules can be a site of survival and of active multiplication for populations of mammalian pathogens, which could thus alternate between the target animal and a number of neutral plant hosts. The worldwide distribution of as yet uninvestigated legumes raises the concern that these represent a general niche that could enhance the hazards posed by microorganisms of clinical nature.


Subject(s)
Bacteria/isolation & purification , Bacteria/pathogenicity , Fabaceae/microbiology , Plant Roots/microbiology , Algeria , Anti-Bacterial Agents/pharmacology , Bacterial Adhesion , Bacterial Toxins/toxicity , Cells, Cultured , Drug Resistance, Bacterial , Epithelial Cells/microbiology , Humans , Microbial Sensitivity Tests , Virulence
10.
Syst Appl Microbiol ; 31(5): 378-86, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18789623

ABSTRACT

A total of 274 bacterial strains were isolated from the root nodules of Prosopis juliflora, growing in two arid soils of the eastern area of Morocco. A physiological plate screening allowed the selection of 15 strains that could tolerate NaCl concentrations between 175 and 500 mM. These were compared with 15 strains chosen from among the ones which did not tolerate high salinity. The diversity of strains was first assessed by rep-PCR amplification fingerprinting using BOXA1R and ERIC primers. An analysis of the PCR-amplified 16S rDNA gene digestion profiles using five endonucleases indicated the presence of different lineages among the taxa associated with P. juliflora nodules in the soils studied. Nucleotide sequencing of the small subunit rRNA gene and BLAST analysis showed that P. juliflora could host at least six bacterial species in this region and that the identity of those associated with high salt tolerance was clearly distinct from that of the salt-sensitive ones. Among the former, the first type displayed 99% similarity with different members of the genus Sinorhizobium, the second 97% similarity with species within the genus Rhizobium, while the third ribosomal type had 100% homology to Achromobacter xylosoxidans. Within the salt-sensitive isolates the prevailing type observed showed 98% similarity with Rhizobium multihospitium and R. tropici, a second type had 98% similarity to R. giardinii, and a further case displayed 97% colinearity with the Ensifer group including E. maghrebium and E. xericitae. All of the thirty strains encompassing these types re-nodulated P. juliflora in microbiologically controlled conditions and all of them were shown to possess a copy of the nodC gene. This is the first report detecting the betaproteobacterial genus Achromobacter as nodule-forming species for legumes. The observed variability in symbiont species and the abundance of nodulation-proficient strains is in line with the observation that the plant always appears to be nodulated and efficiently fixing nitrogen in spite of a wide range of soil and environmental conditions.


Subject(s)
Bacteria/classification , Bacteria/isolation & purification , Desert Climate , Genetic Variation , Nitrogen Fixation , Plant Roots/microbiology , Prosopis/microbiology , Achromobacter/classification , Achromobacter/genetics , Achromobacter/isolation & purification , Bacteria/genetics , DNA Fingerprinting/methods , DNA Primers , DNA, Bacterial/analysis , DNA, Bacterial/isolation & purification , Morocco , Polymerase Chain Reaction/methods , Prosopis/growth & development , Rhizobium/classification , Rhizobium/genetics , Rhizobium/isolation & purification , Symbiosis
11.
FEMS Microbiol Ecol ; 63(3): 383-400, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18194345

ABSTRACT

A previous analysis showed that Gammaproteobacteria could be the sole recoverable bacteria from surface-sterilized nodules of three wild species of Hedysarum. In this study we extended the analysis to eight Mediterranean native, uninoculated legumes never previously investigated regarding their root-nodule microsymbionts. The structural organization of the nodules was studied by light and electron microscopy, and their bacterial occupants were assessed by combined cultural and molecular approaches. On examination of 100 field-collected nodules, culturable isolates of rhizobia were hardly ever found, whereas over 24 other bacterial taxa were isolated from nodules. None of these nonrhizobial isolates could nodulate the original host when reinoculated in gnotobiotic culture. Despite the inability to culture rhizobial endosymbionts from within the nodules using standard culture media, a direct 16S rRNA gene PCR analysis revealed that most of these nodules contained rhizobia as the predominant population. The presence of nodular endophytes colocalized with rhizobia was verified by immunofluorescence microscopy of nodule sections using an Enterobacter-specific antibody. Hypotheses to explain the nonculturability of rhizobia are presented, and pertinent literature on legume endophytes is discussed.


Subject(s)
Bacteria/classification , Bacteria/growth & development , Fabaceae/microbiology , Nitrogen Fixation , Plant Roots/microbiology , Rhizobiaceae/growth & development , Algeria , Culture Media , DNA, Bacterial/analysis , Enterobacter/growth & development , Fabaceae/classification , Italy , Microscopy, Fluorescence , Plant Roots/ultrastructure , Polymerase Chain Reaction/methods , RNA, Ribosomal, 16S/genetics , Rhizobiaceae/classification , Rhizobiaceae/genetics , Rhizobiaceae/isolation & purification , Symbiosis
12.
FEMS Microbiol Ecol ; 54(3): 445-53, 2005 Nov 01.
Article in English | MEDLINE | ID: mdl-16332341

ABSTRACT

Using the sequence of an insertion element originally found in Rhizobium sullae, the nitrogen-fixing bacterial symbiont of the legume Hedysarum coronarium, we devised three primer pairs (inbound, outbound and internal primers) for the following applications: (a) tracing genetic relatedness within rhizobia using a method independent of ribosomal inheritance, based on the presence and conservation of IS elements; (b) achieve sensitive and reproducible bacterial fingerprinting; (c) enable a fast and unambiguous detection of rhizobia at the species level. In terms of taxonomy, while in line with part of the 16S rRNA gene- and glutamine synthetase I-based clustering, the tools appeared nonetheless more coherent with the actual geographical ranges of origin of rhizobial species, strengthening the European-Mediterranean connections and discerning them from the asian and american taxa. The fingerprinting performance of the outward-pointing primers, designed upon the inverted repeats, was shown to be at least as sensitive as BOX PCR, and to be functional on a universal basis with all 13 bacterial species tested. The primers designed on the internal part of the transposase gene instead proved highly species-specific for R. sullae, enabling selective distinction from its most related species, and testing positive on every R. sullae strain examined, fulfilling the need of PCR-mediated species identification. A general use of other IS elements for a combined approach to rhizobial taxonomy and ecology is proposed.


Subject(s)
DNA Primers/genetics , DNA Transposable Elements/genetics , Phylogeny , Polymerase Chain Reaction/methods , Rhizobium/genetics , Base Sequence , Classification/methods , Cluster Analysis , Computational Biology , DNA Fingerprinting/methods , Image Processing, Computer-Assisted , Molecular Sequence Data , Sequence Analysis, DNA , Species Specificity
13.
Syst Appl Microbiol ; 27(4): 462-8, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15368852

ABSTRACT

The bacteria hosted in the root nodules of the three Mediterranean wild legume species Hedysarum carnosum, Hedysarum spinosissimum subsp. capitatum, and Hedysarum pallidum, growing in native stands in different habitats in Algeria were isolated. Bacteria were recovered on yeast-mannitol-agar or on minimal media from a total of 52 nodules. Isolates were analyzed by Amplified Ribosomal DNA Restriction Analysis (ARDRA) using the enzyme CfoI, and further sorted by RAPD fingerprinting. A total of ten different types were found and their amplified 16S rDNA was sequenced and compared to databases. The BLAST alignment indicates that all the species whose sequences share 98 to 100% identity to the bacteria found in these nodules belong to the class Gammaproteobacteria and include Pantoea agglomerans, Enterobacter kobei, Enterobacter cloacae, Leclercia adecarboxylata, Escherichia vulneris, and Pseudomonas sp. No evidence of any rhizobial-like sequence was found even upon amplifying from the bulk of microbial cells obtained from the squashed nodules, suggesting that the exclusive occupants of the nodules formed by the three plants tested are members of the orders Enterobacteriales or Pseudomonadales. This is the first report of Gammaproteobacteria associated with legume nodules. Despite the presence of the related crop plant Hedysarum coronarium, specifically nodulated by Rhizobium sullae, these three Hedysarum species demonstrate to have undergone a separate path in terms of endophytic interactions with bacteria. An hypothesis to account for differences between the symbiotic relationships engaged by man-managed legumes, and those found in plants whose ecology is independent from human action, is discussed.


Subject(s)
Fabaceae/microbiology , Gammaproteobacteria/physiology , Algeria , DNA Fingerprinting/methods , DNA, Ribosomal/analysis , Gammaproteobacteria/genetics , Gammaproteobacteria/growth & development , Molecular Sequence Data , Nitrogen Fixation , Plant Roots/microbiology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Symbiosis
14.
Genomics ; 80(6): 585-92, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12504850

ABSTRACT

We show a mute 9.1-kb gap in the human genome reference map, unraveled by RDA studies, to be a worldwide deletion/insertion polymorphism of stable type. The molecular and population data presented suggest its origin from a unique ancestral transposition event in chromosomal region 22q11.2, overlapping the IglambdaV genes at about 450 kb from the cluster of the IglambdaJ-C genes. These findings are not meant to be just another report of a polymorphic marker suitable for population studies. Rather, we wish to stress that a large number of inborn mute gaps may be spread all over the genome and that the many RDA-detected microdeletions already available are efficient tools for the discovery of this otherwise hidden category of genetic variation. Apart from their possible impact on expression of structural genes, mute gaps must be filled for the reference map of our genome to be truly completed.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 22/genetics , Genome, Human , Chromosome Mapping , DNA/chemistry , DNA/genetics , Evolution, Molecular , Genetics, Population , Haplotypes , Humans , Mutagenesis, Insertional , Polymorphism, Genetic , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...