Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ultramicroscopy ; 108(3): 179-95, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18054168

ABSTRACT

Improved resolution made possible by aberration correction has greatly increased the demands on the performance of all parts of high-end electron microscopes. In order to meet these demands, we have designed and built an entirely new scanning transmission electron microscope (STEM). The microscope includes a flexible illumination system that allows the properties of its probe to be changed on-the-fly, a third-generation aberration corrector which corrects all geometric aberrations up to fifth order, an ultra-responsive yet stable five-axis sample stage, and a flexible configuration of optimized detectors. The microscope features many innovations, such as a modular column assembled from building blocks that can be stacked in almost any order, in situ storage and cleaning facilities for up to five samples, computer-controlled loading of samples into the column, and self-diagnosing electronics. The microscope construction is described, and examples of its capabilities are shown.

2.
Microsc Microanal ; 12(6): 515-26, 2006 Dec.
Article in English | MEDLINE | ID: mdl-19830944

ABSTRACT

A Nion spherical-aberration (Cs) corrector was recently installed on Lehigh University's 300-keV cold field-emission gun (FEG) Vacuum Generators HB 603 dedicated scanning transmission electron microscope (STEM), optimized for X-ray analysis of thin specimens. In this article, the impact of the Cs-corrector on X-ray analysis is theoretically evaluated, in terms of expected improvements in spatial resolution and analytical sensitivity, and the calculations are compared with initial experimental results. Finally, the possibilities of atomic-column X-ray analysis in a Cs-corrected STEM are discussed.

3.
Science ; 305(5691): 1741, 2004 Sep 17.
Article in English | MEDLINE | ID: mdl-15375260

ABSTRACT

Despite the use of electrons with wavelengths of just a few picometers, spatial resolution in a transmission electron microscope (TEM) has been limited by spherical aberration to typically around 0.15 nanometer. Individual atomic columns in a crystalline lattice can therefore only be imaged for a few low-order orientations, limiting the range of defects that can be imaged at atomic resolution. The recent development of spherical aberration correctors for transmission electron microscopy allows this limit to be overcome. We present direct images from an aberration-corrected scanning TEM that resolve a lattice in which the atomic columns are separated by less than 0.1 nanometer.

4.
Ultramicroscopy ; 96(3-4): 229-37, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12871791

ABSTRACT

In the 4 years since the previous meeting in the SALSA series, aberration correction has progressed from a promising concept to a powerful research tool. We summarize the factors that have enabled 100-120kV scanning transmission electron microscopes to achieve sub-A resolution, and to increase the current available in an atom-sized probe by a factor of 10 and more. Once C(s) is corrected, fifth-order spherical aberration (C(5)) and chromatic aberration (C(c)) pose new limits on resolution. We describe a quadrupole/octupole corrector of a new design, which will correct all fifth-order aberrations while introducing less than 0.2mm of additional C(c). Coupled to an optimized STEM column, the new corrector promises to lead to routine sub-A electron probes at 100kV, and to sub-0.5A probes at higher operating voltages.

SELECTION OF CITATIONS
SEARCH DETAIL
...