Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Comput Biol ; 19(3): e1010972, 2023 03.
Article in English | MEDLINE | ID: mdl-36940207

ABSTRACT

As evidenced by the worldwide pandemic, respiratory infectious diseases and their airborne transmission must be studied to safeguard public health. This study focuses on the emission and transport of speech-generated droplets, which can pose risk of infection depending on the loudness of the speech, its duration and the initial angle of exhalation. We have numerically investigated the transport of these droplets into the human respiratory tract by way of a natural breathing cycle in order to predict the infection probability of three strains of SARS-CoV-2 on a person who is listening at a one-meter distance. Numerical methods were used to set the boundary conditions of the speaking and breathing models and large eddy simulation (LES) was used for the unsteady simulation of approximately 10 breathing cycles. Four different mouth angles when speaking were contrasted to evaluate real conditions of human communication and the possibility of infection. Breathed virions were counted using two different approaches: the breathing zone of influence and direction deposition on the tissue. Our results show that infection probability drastically changes based on the mouth angle and the breathing zone of influence overpredicts the inhalation risk in all cases. We conclude that to portray real conditions, the probability of infection should be based on direct tissue deposition results to avoid overprediction and that several mouth angles must be considered in future analyses.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Respiratory System , Administration, Inhalation , Respiration
2.
Environ Pollut ; 252(Pt B): 1388-1398, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31254896

ABSTRACT

Industry implies economic growth; however, outdoor and indoor air pollution generated by industrial activities represents a widespread problem for the environment and human beings. In terms of human health, indoor air quality assessment has become essential in a society where people spend most of their time in indoor dwellings, as in the case of industry workers. Because indoor air quality is strongly affected by the outdoor environment, especially under natural ventilation conditions (e.g., cross-ventilation), a comprehensive analysis that includes outdoor atmospheric-urban environment is needed to reproduce realistic scenarios. In this context, computational fluid dynamics (CFD) is a useful tool. To perform a precise analysis of the inhalation exposure of factory workers to potential gas-phase contaminants in the working environment (i.e., inhaled dose of contaminants and potential effects), the human body and respiratory tract need to be integrated in the analysis. Therefore, in this study, we performed an integrated occupational inhalation exposure/toxicology assessment in a factory building that applies a computer simulated person (CSP), a virtual human respiratory tract and integrated physiologically-based toxicokinetic (PBTK) model to predict tissue dosimetry distribution. Outdoor airflow variation was transported into the enclosure through an hourly change in wind pressure coefficient to calculate transient ventilation rate and indoor contaminant concentration between 08:00 and 17:00 h. Thereafter, the time-averaged contaminant concentration calculated at the nares of the human body was employed in a steady state calculation of airflow and contaminant distribution inside the virtual respiratory tract. Subsequently, we predicted adsorbed contaminant in the first layer of tissue of the human airways; highest adsorption took place in the nasal cavity. Finally, based on the results of the comprehensive coupled numerical analysis performed using the CFD-CSP-PBTK model, we quantitatively discussed differences between the inhalation exposure concentration and representative contaminant concentration in the factory space (e.g., time and volume-averaged concentration).


Subject(s)
Air Pollution, Indoor/analysis , Inhalation Exposure/analysis , Occupational Exposure/analysis , Respiratory System/drug effects , Ventilation/methods , Computer Simulation , Humans , Hydrodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...