Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phytomedicine ; 123: 155197, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37952409

ABSTRACT

BACKGROUND: Zika virus (ZIKV) is an emerging arbovirus that in recent years has been associated with cases of severe neurological disorders, such as microcephaly in newborns and Guillain-Barré syndrome in adults. As there is no vaccine or treatment, the search for new therapeutic targets is of great relevance. In this sense, plants are extremely rich sources for the discovery of new bioactive compounds and the species Phyllanthus brasiliensis (native to the Amazon region) remains unexplored. PURPOSE: To investigate the potential antiviral activity of compounds isolated from P. brasiliensis leaves against ZIKV infection. METHODS: In vitro antiviral assays were performed with justicidin B (a lignan) and four glycosylated lignans (tuberculatin, phyllanthostatin A, 5-O-ß-d-glucopyranosyljusticidin B, and cleistanthin B) against ZIKV in Vero cells. MTT colorimetric assay was used to assess cell viability and plaque forming unit assay to quantify viral load. In addition, for justicidin B, tests were performed to investigate the mechanism of action (virucidal, adsorption, internalization, post-infection). RESULTS: The isolated compounds showed potent anti-ZIKV activities and high selectivity indexes. Moreover, justicidin B, tuberculatin, and phyllanthostatin A completely reduced the viral load in at least one of the concentrations evaluated. Among them, justicidin B stood out as the main active, and further investigation revealed that justicidin B exerts its antiviral effect during post-infection stages, resulting in a remarkable 99.9 % reduction in viral load when treatment was initiated 24 h after infection. CONCLUSION: Our findings suggest that justicidin B inhibits endosomal internalization and acidification, effectively interrupting the viral multiplication cycle. Therefore, the findings shed light on the promising potential of isolated compounds isolated from P. brasiliensis, especially justicidin B, which could contribute to the drug development and treatments for Zika virus infections.


Subject(s)
Dioxolanes , Glycosides , Lignans , Naphthalenes , Phyllanthus , Zika Virus Infection , Zika Virus , Infant, Newborn , Animals , Humans , Chlorocebus aethiops , Zika Virus Infection/drug therapy , Vero Cells , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Lignans/pharmacology , Lignans/therapeutic use , Virus Replication
2.
Metabolites ; 12(11)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36355166

ABSTRACT

Deguelia nitidula (Benth.) A.M.G.Azevedo & R.A.Camargo (Fabaceae) is an herbaceous plant distributed in the Brazilian Amazon, and it is called "raiz do sol" (sun roots). On Marajó Island, quilombola communities use its prepared roots to treat skin diseases commonly caused by fungi, viruses, and bacteria. Thus, in this study, the extract, and its fractions from D. nitidula roots were used to perform in vitro cytotoxic and antibacterial assays against Staphylococcus aureus strains. Thereafter, liquid chromatography-mass spectrometry (LC-MS) was used for the metabolite annotation process. The ethanolic extract of D. nitidula roots show significant bactericidal activity against S. aureus with IC50 82 µg.mL-1 and a selectivity index (SI) of 21.35. Furthermore, the SREFr2 and SREFr3 fractions show a potent bactericidal activity, i.e., MIC of 46.8 µg.mL-1 for both, and MBC of 375 and 93.7 µg.mL-1, respectively. As showcased, SREFr3 shows safe and effective antibacterial activity mainly in respect to the excellent selectivity index (SI = 82.06). On the other hand, SREFr2 shows low selectivity (SI = 6.8), which characterizes it as not safe for therapeutic use. Otherwise, due to a limited amount of reference MS2 spectra in public libraries, up to now, it was not possible to perform a complete metabolite annotation. Despite that, our antibacterial results for SREFr3 and correlated substructures of amino acid derivatives show that the roots of D. nitidula are a natural source of specialized metabolites, which can be isolated in the future, and then used as a support for further bio-guided research, as well as natural drug development.

3.
Pharmaceutics ; 14(9)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36145544

ABSTRACT

Momordica charantia L. (Cucurbitaceae) is a plant known in Brazil as "melão de São Caetano", which has been related to many therapeutic applications in folk medicine. Herein, we describe antibacterial activities and related metabolites for an extract and fractions obtained from the leaves of that species. An ethanolic extract and its three fractions were used to perform in vitro antibacterial assays. In addition, liquid chromatography coupled to mass spectrometry and the molecular networking approach were used for the metabolite annotation process. Overall, 25 compounds were annotated in the ethanolic extract from M. charantia leaves, including flavones, terpenes, organic acids, and inositol pyrophosphate derivatives. The ethanolic extract exhibited low activity against Proteus mirabilis (MIC 312.5 µg·mL-1) and Klebsiella pneumoniae (MIC 625 µg·mL-1). The ethyl acetate phase showed interesting antibacterial activity (MIC 156.2 µg·mL-1) against Klebsiella pneumoniae, and it was well justified by the high content of glycosylated flavones. Therefore, based on the ethyl acetate phase antibacterial result, we suggest that M. charantia leaves could be considered as an alternative antibacterial source against K. pneumoniae and can serve as a pillar for future studies as well as pharmacological application against the bacteria.

4.
Metabolites ; 12(8)2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35893248

ABSTRACT

Margaritaria nobilis is a shrubby species widely distributed in Brazil from the Amazon to the Atlantic Rainforest. Its bark and fruit are used in the Peruvian Amazon for disinfecting abscesses and as a tonic in pregnancy, respectively, and its leaves are used to treat cancer symptoms. From analyses via UHPLC-MS/MS, we sought to determine the chemical profile of the ethanolic extract of M. nobilis leaves by means of putative analyses supported by computational tools and spectral libraries. Thus, it was possible to annotate 44 compounds, of which 12 are phenolic acid derivatives, 16 are O-glycosylated flavonoids and 16 hydrolysable tannins. Among the flavonoids, although they are known, except for kaempferol, which has already been isolated from this species, the other flavonoids (10, 14, 15, 21, 24-26, 28-30, 33-35, 40 and 41) are being reported for the first time in the genus. Among the hydrolysable tannins, six ellagitannins present the HHDP group (6, 19, 22, 31, 38 and 43), one presents the DHHDP group (5), and four contain oxidatively modified congeners (12, 20, 37 and 39). Through the annotation of these compounds, we hope to contribute to the improved chemosystematics knowledge of the genus. Furthermore, supported by a metric review of the literature, we observed that many of the compounds reported here are congeners of authentically bioactive compounds. Thus, we believe that this work may help in understanding future pharmacological activities.

5.
Molecules ; 27(5)2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35268642

ABSTRACT

Diseases caused by viruses are a global threat, resulting in serious medical and social problems for humanity. They are the main contributors to many minor and major outbreaks, epidemics, and pandemics worldwide. Over the years, medicinal plants have been used as a complementary treatment in a range of diseases. In this sense, this review addresses promising antiviral plants from Marajó island, a part of the Amazon region, which is known to present a very wide biodiversity of medicinal plants. The present review has been limited to articles and abstracts available in Scopus, Web of Science, Science Direct, Scielo, PubMed, and Google Scholar, as well as the patent offices in Brazil (INPI), United States (USPTO), Europe (EPO) and World Intellectual Property Organization (WIPO). As a result, some plants from Marajó island were reported to have actions against HIV-1,2, HSV-1,2, SARS-CoV-2, HAV and HBV, Poliovirus, and influenza. Our major conclusion is that plants of the Marajó region show promising perspectives regarding pharmacological potential in combatting future viral diseases.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Plant Extracts/chemistry , Plants, Medicinal/chemistry , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , Brazil , COVID-19/virology , HIV-1/drug effects , Hepatitis A virus/drug effects , Herpesvirus 1, Human/drug effects , Humans , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plants, Medicinal/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification
6.
Molecules ; 27(6)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35335210

ABSTRACT

Peperomia pellucida is a species known in the Amazon as "erva-de-jabuti" that has been used in several therapeutic applications based on folk medicine. Herein, we describe the classes, subclasses, and the main compounds of the leaves, stems, and roots from P. pellucida by ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry associated with molecular networks, mirror plot on the GNPS library, and machine learning. These data show compounds that were annotated for the first time in the Peperomia genus, such as 2',4',5'-trihydroxybutyrophenonevelutin, dehydroretrofractamide C, and retrofractamide B.


Subject(s)
Peperomia , Chromatography, High Pressure Liquid/methods , Medicine, Traditional , Peperomia/chemistry , Plant Leaves/chemistry , Plant Roots/chemistry
7.
Pharmaceutics ; 13(5)2021 May 10.
Article in English | MEDLINE | ID: mdl-34068527

ABSTRACT

Chamaecrista diphylla (L.) Greene (Fabaceae/Caesalpiniaceae) is a herbaceous plant that is widely distributed throughout the Americas. Plants from this genus have been used in traditional medicine as a laxative, to heal wounds, and to treat ulcers, snake and scorpion bites. In the present study, we investigated the chemical composition of Chamaecrista diphylla leaves through a mass spectrometry molecular network approach. The oxygen radical absorbance capacity (ORAC) for the ethanolic extract, enriched fractions and isolated compounds was assessed. Overall, thirty-five compounds were annotated for the first time in C. diphylla. Thirty-two of them were reported for the first time in the genus. The isolated compounds 9, 12, 24 and 33 showed an excellent antioxidant capacity, superior to the extract and enriched fractions. Bond dissociation energy calculations were performed to explain and sustain the antioxidant capacity found. According to our results, the leaves of C. diphylla represent a promising source of potent antioxidant compounds.

8.
Molecules ; 25(24)2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33352821

ABSTRACT

The main challenge of plant chemical diversity exploration is how to develop tools to study exhaustively plant tissues. Their sustainable sourcing is a limitation as bioguided strategies and dereplication need quite large amounts of plant material. We examine if alternative solutions could overcome these difficulties by obtaining a secure, sustainable, and scalable source of tissues able to biosynthesize an array of metabolites. As this approach would be as independent of the botanical origin as possible, we chose eight plant species from different families. We applied a four steps culture establishment procedure, monitoring targeted compounds through mass spectrometry-based analytical methods. We also characterized the capacities of leaf explants in culture to produce diverse secondary metabolites. In vitro cultures were successfully established for six species with leaf explants still producing a diversity of compounds after the culture establishment procedure. Furthermore, explants from leaves of axenic plantlets were also analyzed. The detection of marker compounds was confirmed after six days in culture for all tested species. Our results show that the first stage of this approach aiming at easing exploration of plant chemodiversity was completed, and leaf tissues could offer an interesting alternative providing a constant source of natural compounds.


Subject(s)
Biological Products/metabolism , Plant Leaves/metabolism , Plants/metabolism , Biological Products/chemistry , Mass Spectrometry , Plant Leaves/chemistry , Plants/chemistry
9.
PLoS One ; 15(1): e0225514, 2020.
Article in English | MEDLINE | ID: mdl-31929529

ABSTRACT

Based on ethnopharmacological studies, a lot of plants, as well as its compounds, have been investigated for the potential use as wound healing agents. In Brazil, Curatella americana is traditionally used by local people to treat wounds, ulcers and inflammations. However, to the best of our knowledge, its traditional use in the treatment of wounds has not been validated by a scientific study. Here, some compounds, many of them flavonoids, were identified in the hydroethanolic extract from the leaves of C. americana (HECA) by LC-HRMS and LC-MS/MS. Besides that, solutions containing different concentrations of HECA and a gel produced with this extract were evaluated for its antimicrobial, coagulant and wound healing activities on an excision mouse wound model as well as its acute dermal safety. A total of thirteen compounds were identified in HECA, mainly quercetin, kaempferol and glucoside derivatives of both, besides catechin and epicatechin known as wound healing agents. The group treated with 1% of HECA exhibited highest wound healing activity and best rate of wound contraction confirmed by histopathology results. The present study provides scientific evidence of, this extract (HECA) possess remarkable wound healing activity, thereby, supporting the traditional use.


Subject(s)
Dilleniaceae/chemistry , Plant Extracts/pharmacology , Wound Healing/drug effects , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Brazil , Catechin/isolation & purification , Chromatography, Liquid , Flavonoids/chemistry , Flavonoids/pharmacology , Glucosides/chemistry , Glucosides/isolation & purification , Humans , Kaempferols/chemistry , Kaempferols/isolation & purification , Mice , Plant Extracts/chemistry , Plant Leaves/chemistry , Quercetin/chemistry , Quercetin/isolation & purification , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...