Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Public Health ; 21(1): 856, 2021 05 03.
Article in English | MEDLINE | ID: mdl-33941135

ABSTRACT

BACKGROUND: Vector control is an essential component in prevention and control of malaria in malaria endemic areas. Insecticide treated nets is one of the standard tools recommended for malaria vector control. The objective of the study was to determine physical integrity and insecticidal potency of long-lasting insecticidal nets (LLINs) used in control of malaria vector in Kirinyaga County, Kenya. METHOD: The study targeted households in an area which had received LLINs during mass net distribution in 2016 from Ministry of Health. A total of 420 households were sampled using systematic sampling method, where the household heads consented to participate in the study. A semi-structured questionnaire was administered to assess care and use while physical examination was used to determine integrity. Chemical concentration was determined by gas chromatography mass spectroscopy (GC-MS). Data analysis was done using Statistical Package for Social Sciences (SPSS) version 19. RESULTS: After 18 months of use, 96.9% (95% CI: 95.2-98.6%) of the distributed nets were still available. Regarding net utilization, 94.1% of household heads reported sleeping under an LLIN the previous night. After physical examination, 49.9% (95% CI: 43-52.8%) of the bed nets had at least one hole. The median number of holes of any size was 2[interquartile range (IQR) 1-4], and most holes were located on the lower part of the nets, [median 3 (IQR 2-5)]. Only 15% of the nets with holes had been repaired. The median concentration for α-cypermethrin was 7.15 mg/m2 (IQR 4.25-15.31) and 0.00 mg/g (IQR 0.00-1.99) for permethrin. Based on pHI, Chi-square test varied significantly with the manufacturer (X (6, N = 389) = 29.14, p = 0.04). There was no significant difference between nets with different number of washes (X2(2) = 4.55, p = 0.103). CONCLUSION: More than three-quarters of the nets supplied had survived and insecticidal potency was adequate in vector control. Standard procedure for field evaluation of surface insecticidal content available to a mosquito after landing on a net to rest is recommended.


Subject(s)
Anopheles , Insecticide-Treated Bednets , Insecticides , Malaria , Animals , Humans , Kenya , Malaria/prevention & control , Mosquito Control , Mosquito Vectors
2.
Sci Total Environ ; 703: 134925, 2020 Feb 10.
Article in English | MEDLINE | ID: mdl-31726303

ABSTRACT

The largely uncontrolled release of active pharmaceuticals ingredients (APIs) within untreated wastewater discharged to waterbodies, associated with many rapidly urbanising centres is of growing concern owing to potential antimicrobial resistance, endocrine disruption and potential toxicity. A sampling campaign has been undertaken to assess the source, occurrence, magnitude and risk associated with APIs and other chemicals within the Nairobi/Athi river basin, in Kenya, East Africa. The catchment showed an extensive downstream impact zone estimated to extend 75 km, mostly, but not exclusively, derived from the direct discharge of untreated wastewater from the urban centre of Nairobi city. The exact extent of the downstream boundary of the Nairobi city impact zone was unclear owing to the inputs of untreated wastewater sources from the continuous urbanized areas along the river, which counteracted the natural attenuation caused by dilution and degradation. The most frequently detected APIs and chemicals were caffeine, carbamazepine, trimethoprim, nicotine, and sulfamethoxazole. Paracetamol, caffeine, sulfamethoxazole, and trimethoprim alone contributed 86% of the total amount of APIs determined along the Nairobi/Athi catchment. In addition to direct discharge of untreated domestic wastewater attributed to the informal settlements within the conurbation, other sources were linked to the industrial area in Nairobi City where drug formulation is known to occur, the Dandora landfill and veterinary medicines from upstream agriculture. It was shown that there was a possible environmental risk of API ecotoxicological effects beyond the end of the traditional impact zone defined by elevated biochemical oxygen demand concentrations; with metronidazole and sulfamethoxazole exhibiting the highest risk.


Subject(s)
Environmental Monitoring , Pharmaceutical Preparations/analysis , Water Pollutants, Chemical/analysis , Agriculture , Cities , Kenya , Risk Assessment , Rivers/chemistry , Urbanization
SELECTION OF CITATIONS
SEARCH DETAIL
...