Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Entropy (Basel) ; 25(4)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37190475

ABSTRACT

In recent years, chaotic synchronization has received a lot of interest in applications in different fields, including in the design of private and secure communication systems. The purpose of this paper was to achieve the synchronization of the Méndez-Arellano-Cruz-Martínez (MACM) 3D chaotic system coupled in star topology. The MACM electronic circuit is used as chaotic nodes in the communication channels to achieve synchronization in the proposed star network; the corresponding electrical hardware in the slave stages receives the coupling signal from the master node. In addition, a novel application to the digital image encryption process is proposed using the coupled-star-network; and the switching parameter technique is finally used to transmit an image as an encrypted message from the master node to the slave coupled nodes. Finally, the cryptosystem is submitted to statistical tests in order to show the effectiveness in multi-user secure image applications.

2.
Entropy (Basel) ; 25(5)2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37238462

ABSTRACT

In this work, the problem of master-slave outer synchronization in different inner-outer network topologies is presented. Specifically, the studied inner-outer network topologies are coupled in master-slave configuration, where some particular scenarios concerning inner-outer topologies are addressed in order to disclose a suitable coupling strength to achieve outer synchronization. The novel MACM chaotic system is used as a node in the coupled networks, which presents robustness in its bifurcation parameters. Extensive numerical simulations are presented where the stability of the inner-outer network topologies is analyzed through a master stability function approach.

3.
Nonlinear Dyn ; 111(7): 6773-6789, 2023.
Article in English | MEDLINE | ID: mdl-36465277

ABSTRACT

Recently, chaotic maps have been considered to design pseudorandom number generator (PRNG). However, some chaotic maps present security disadvantages, such as low uniformity and low randomness properties. Nowadays, chaos-based PRNGs are used as the main source for the development of cryptographic algorithms. In this work, to overcome such weaknesses, a novel 2D hyperchaotic map is proposed based on discrete-time feedback by using Hénon map and Sine map. In addition, the dynamics of the hyperchaotic map are enhanced by using the remainder after division function (rem), where better random statistical properties are obtained. A comparison is made between the enhanced Hénon-Sine hyperchaotic map (EHSHM) and the Hénon-Sine hyperchaotic map through Lyapunov exponent analysis, attractor trajectory, histograms and sensitivity at initialization. Then, 8-bit pseudorandom number generator based on the proposed hyperchaotic map (PRNG-EHSHM) is designed and the initial seed of the PRNG is calculated by a secret key of 60 hexadecimal characters. It is implemented in both MATLAB and Arduino Mega microcontroller for experimental results. A complete security analysis is presented from a cryptographic point of view, such as key space, floating frequency, histograms and entropy of the information. Moreover, the randomness is verified with the tests of the National Institute of Standards and Technology (NIST 800-22). Based on the security results obtained, the proposed PRNG-EHSHM can be implemented in embedded cryptographic applications based on chaos.

4.
Sensors (Basel) ; 22(3)2022 Feb 05.
Article in English | MEDLINE | ID: mdl-35161955

ABSTRACT

Childhood obesity causes not only medical and psychosocial problems, it also reduces the life expectancy of the adults that they will become. On a large scale, obese adults adversely affect labor markets and the gross domestic product of countries. Monitoring the growth charts of children helps to maintain their body weight within healthy parameters according to the World Health Organization. Modern technologies allow the use of telehealth to carry out weight control programs and monitoring to verify children's compliance with the daily recommendations for risk factors that can be promoters of obesity, such as insufficient physical activity and insufficient sleep hours. In this work, we propose a secure remote monitoring and supervision scheme of physical activity and sleep hours for the children based on telehealth, multi-user networks, chaotic encryption, and spread spectrum, which, to our knowledge, is the first attempt to consider this service for safe pediatric telemedicine. In experimental results, we adapted a recent encryption algorithm in the literature for the proposed monitoring scheme using the assessment of childhood obesity as an application case in a multi-user network to securely send and receive fictitious parameters on childhood obesity of five users through the Internet by using just one communication channel. The results show that all the monitored parameters can be transmitted securely, achieving high sensitivity against secret key, enough secret key space, high resistance against noise interference, and 4.99 Mb/sec in computational simulations. The proposed scheme can be used to monitor childhood obesity in secure telehealth application.


Subject(s)
Pediatric Obesity , Telemedicine , Adult , Algorithms , Child , Exercise , Humans , Monitoring, Physiologic , Pediatric Obesity/prevention & control
5.
Entropy (Basel) ; 21(8)2019 Aug 20.
Article in English | MEDLINE | ID: mdl-33267528

ABSTRACT

Currently, chaos-based cryptosystems are being proposed in the literature to provide confidentiality for digital images, since the diffusion effect in the Advance Encryption Standard (AES) algorithm is weak. Security is the most important challenge to assess in cryptosystems according to the National Institute of Standard and Technology (NIST), then cost and performance, and finally algorithm and implementation. Recent chaos-based image encryption algorithms present basic security analysis, which could make them insecure for some applications. In this paper, we suggest an integral analysis framework related to comprehensive security analysis, cost and performance, and the algorithm and implementation for chaos-based image cryptosystems. The proposed guideline based on 20 analysis points can assist new cryptographic designers to present an integral analysis of new algorithms. Future comparisons of new schemes can be more consistent in terms of security and efficiency. In addition, we present aspects regarding digital chaos implementation, chaos validation, and key definition to improve the security of the overall cryptosystem. The suggested guideline does not guarantee security, and it does not intend to limit the liberty to implement new analysis. However, it provides for the first time in the literature a solid basis about integral analysis for chaos-based image cryptosystems as an effective approach to improve security.

SELECTION OF CITATIONS
SEARCH DETAIL
...