Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 33(6): 1563-1575, 2017 02 14.
Article in English | MEDLINE | ID: mdl-28139122

ABSTRACT

Interfacially stabilized nonaqueous lipid-based foams, which we name here oleofoams, are rarely encountered as opposed to the large number of aqueous foams stabilized by molecular or particulate emulsifiers. There is no case well described in the literature with a convincing characterization of the interfacial contribution to oleofoam stability. Methods for filling this gap are described here, which reach out to a large part of the lipid phase diagram. We bring here complete evidence that lipidic crystals made of a high fraction of fully soluble monoglyceride (MG) in oil do not only adsorb at the oil-air interface but also can easily form a jammed, closely packed layer of crystals around the bubbles of a foam produced by whipping (Pickering effect). Very fine bubbles, soft textures, or firmer ones such as for shaving foams could be obtained, with a high air fraction (up to 75%), which is unprecedented. A thin, jammed layer of crystals on bubbles can cause bubbles to retain nonspherical shapes in the absence of bulk effects for times much longer than the characteristic capillary relaxation time for bare bubbles, which is actual evidence for Pickering-type interfacial stabilization. By comparing to foams obtained by depressurization, we show that whipping is necessary for bubble wrapping with a layer of crystals. The origin of high stability against Ostwald ripening at long times is also discussed. Furthermore, we show that these Pickering whipped foams have rheological properties dominated by interfacial or film contributions, which is of high interest for food and cosmetics applications because of their high moduli. This system can be considered to be a model of the crystallization behavior of MG in oil, which is similar to that in many fats. Our methods are very general in the context of lipid-based foaming, in particular, from food materials, and were used in patent applications.

2.
Dysphagia ; 28(2): 245-52, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23407897

ABSTRACT

In the treatment of oropharyngeal dysphagia, the link between diagnosis and prescription of thickened liquids that are safe to swallow is not always straightforward. Frequently, the capacity to objectively assess and quantify the rheological properties of diagnostic test fluids and to select "rheologically equivalent" dietary products is missing. Perhaps sometimes the importance of an objective comparison is not fully appreciated because two liquids seem reasonably similar in a subjective comparison (e.g., flow from a spoon). The present study deals with some of these issues. Shear viscosity measurements were used to characterize the flow behavior of videofluoroscopic contrast agents and of thickened fluids prepared with commercial thickening agents. Effects of time and composition of the different fluids were analyzed regarding shear-rate-dependent viscosity. Nearly all materials tested showed a pronounced dependence of viscosity with shear rate ("shear thinning"). Results confirm that it is feasible (but not always straightforward) to "match" the viscosities of diagnostic fluids and thickened beverages if certain precautions are taken. For example, the time required to reach final viscosity levels can be significant for some thickeners, particularly when used with liquids containing contrast agents. It is recommend to use only diagnostic materials and thickening agents for which reliable viscosity data are available.


Subject(s)
Contrast Media/chemistry , Deglutition Disorders/diagnostic imaging , Deglutition/drug effects , Diatrizoate Meglumine/chemistry , Fluoroscopy/methods , Deglutition/physiology , Deglutition Disorders/physiopathology , Humans , Video Recording , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...