Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Transl Med ; 14(667): eabo7219, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36260689

ABSTRACT

Compounds acting on multiple targets are critical to combating antimalarial drug resistance. Here, we report that the human "mammalian target of rapamycin" (mTOR) inhibitor sapanisertib has potent prophylactic liver stage activity, in vitro and in vivo asexual blood stage (ABS) activity, and transmission-blocking activity against the protozoan parasite Plasmodium spp. Chemoproteomics studies revealed multiple potential Plasmodium kinase targets, and potent inhibition of Plasmodium phosphatidylinositol 4-kinase type III beta (PI4Kß) and cyclic guanosine monophosphate-dependent protein kinase (PKG) was confirmed in vitro. Conditional knockdown of PI4Kß in ABS cultures modulated parasite sensitivity to sapanisertib, and laboratory-generated P. falciparum sapanisertib resistance was mediated by mutations in PI4Kß. Parasite metabolomic perturbation profiles associated with sapanisertib and other known PI4Kß and/or PKG inhibitors revealed similarities and differences between chemotypes, potentially caused by sapanisertib targeting multiple parasite kinases. The multistage activity of sapanisertib and its in vivo antimalarial efficacy, coupled with potent inhibition of at least two promising drug targets, provides an opportunity to reposition this pyrazolopyrimidine for malaria.


Subject(s)
Antimalarials , Plasmodium , Animals , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Plasmodium falciparum , MTOR Inhibitors , 1-Phosphatidylinositol 4-Kinase , Guanosine Monophosphate , Life Cycle Stages , TOR Serine-Threonine Kinases , Sirolimus , Mammals
2.
Nat Commun ; 13(1): 5746, 2022 09 30.
Article in English | MEDLINE | ID: mdl-36180431

ABSTRACT

Diverse compounds target the Plasmodium falciparum Na+ pump PfATP4, with cipargamin and (+)-SJ733 the most clinically-advanced. In a recent clinical trial for cipargamin, recrudescent parasites emerged, with most having a G358S mutation in PfATP4. Here, we show that PfATP4G358S parasites can withstand micromolar concentrations of cipargamin and (+)-SJ733, while remaining susceptible to antimalarials that do not target PfATP4. The G358S mutation in PfATP4, and the equivalent mutation in Toxoplasma gondii ATP4, decrease the sensitivity of ATP4 to inhibition by cipargamin and (+)-SJ733, thereby protecting parasites from disruption of Na+ regulation. The G358S mutation reduces the affinity of PfATP4 for Na+ and is associated with an increase in the parasite's resting cytosolic [Na+]. However, no defect in parasite growth or transmissibility is observed. Our findings suggest that PfATP4 inhibitors in clinical development should be tested against PfATP4G358S parasites, and that their combination with unrelated antimalarials may mitigate against resistance development.


Subject(s)
Antimalarials , Malaria, Falciparum , Antimalarials/pharmacology , Antimalarials/therapeutic use , Calcium-Transporting ATPases , Erythrocytes/parasitology , Humans , Indoles , Ions , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Mutation , Plasmodium falciparum , Sodium , Spiro Compounds
3.
Cell Chem Biol ; 29(2): 191-201.e8, 2022 02 17.
Article in English | MEDLINE | ID: mdl-34348113

ABSTRACT

We identify the Plasmodium falciparum acetyl-coenzyme A synthetase (PfAcAS) as a druggable target, using genetic and chemical validation. In vitro evolution of resistance with two antiplasmodial drug-like compounds (MMV019721 and MMV084978) selects for mutations in PfAcAS. Metabolic profiling of compound-treated parasites reveals changes in acetyl-CoA levels for both compounds. Genome editing confirms that mutations in PfAcAS are sufficient to confer resistance. Knockdown studies demonstrate that PfAcAS is essential for asexual growth, and partial knockdown induces hypersensitivity to both compounds. In vitro biochemical assays using recombinantly expressed PfAcAS validates that MMV019721 and MMV084978 directly inhibit the enzyme by preventing CoA and acetate binding, respectively. Immunolocalization studies reveal that PfAcAS is primarily localized to the nucleus. Functional studies demonstrate inhibition of histone acetylation in compound-treated wild-type, but not in resistant parasites. Our findings identify and validate PfAcAS as an essential, druggable target involved in the epigenetic regulation of gene expression.


Subject(s)
Acetate-CoA Ligase/antagonists & inhibitors , Antimalarials/pharmacology , Enzyme Inhibitors/pharmacology , Malaria/drug therapy , Plasmodium falciparum/drug effects , Acetate-CoA Ligase/metabolism , Antimalarials/chemistry , Enzyme Inhibitors/chemistry , Humans , Malaria/metabolism , Models, Molecular , Molecular Structure , Parasitic Sensitivity Tests , Plasmodium falciparum/enzymology
4.
Cell Chem Biol ; 29(5): 824-839.e6, 2022 05 19.
Article in English | MEDLINE | ID: mdl-34233174

ABSTRACT

Widespread Plasmodium falciparum resistance to first-line antimalarials underscores the vital need to develop compounds with novel modes of action and identify new druggable targets. Here, we profile five compounds that potently inhibit P. falciparum asexual blood stages. Resistance selection studies with three carboxamide-containing compounds, confirmed by gene editing and conditional knockdowns, identify point mutations in the parasite transporter ABCI3 as the primary mediator of resistance. Selection studies with imidazopyridine or quinoline-carboxamide compounds also yield changes in ABCI3, this time through gene amplification. Imidazopyridine mode of action is attributed to inhibition of heme detoxification, as evidenced by cellular accumulation and heme fractionation assays. For the copy-number variation-selecting imidazopyridine and quinoline-carboxamide compounds, we find that resistance, manifesting as a biphasic concentration-response curve, can independently be mediated by mutations in the chloroquine resistance transporter PfCRT. These studies reveal the interconnectedness of P. falciparum transporters in overcoming drug pressure in different parasite strains.


Subject(s)
Antimalarials , Folic Acid Antagonists , Malaria, Falciparum , Parasites , Quinolines , ATP-Binding Cassette Transporters/genetics , Animals , Antimalarials/pharmacology , Antimalarials/therapeutic use , Heme , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Membrane Transport Proteins/genetics , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Quinolines/pharmacology
5.
Sci Transl Med ; 13(603)2021 07 21.
Article in English | MEDLINE | ID: mdl-34290058

ABSTRACT

The emergence and spread of Plasmodium falciparum resistance to first-line antimalarials creates an imperative to identify and develop potent preclinical candidates with distinct modes of action. Here, we report the identification of MMV688533, an acylguanidine that was developed following a whole-cell screen with compounds known to hit high-value targets in human cells. MMV688533 displays fast parasite clearance in vitro and is not cross-resistant with known antimalarials. In a P. falciparum NSG mouse model, MMV688533 displays a long-lasting pharmacokinetic profile and excellent safety. Selection studies reveal a low propensity for resistance, with modest loss of potency mediated by point mutations in PfACG1 and PfEHD. These proteins are implicated in intracellular trafficking, lipid utilization, and endocytosis, suggesting interference with these pathways as a potential mode of action. This preclinical candidate may offer the potential for a single low-dose cure for malaria.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Parasites , Animals , Antimalarials/pharmacology , Antimalarials/therapeutic use , Endocytosis , Malaria/drug therapy , Malaria, Falciparum/drug therapy , Plasmodium falciparum
6.
Sci Rep ; 11(1): 1888, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33479319

ABSTRACT

New antimalarial therapeutics are needed to ensure that malaria cases continue to be driven down, as both emerging parasite resistance to frontline chemotherapies and mosquito resistance to current insecticides threaten control programmes. Plasmodium, the apicomplexan parasite responsible for malaria, causes disease pathology through repeated cycles of invasion and replication within host erythrocytes (the asexual cycle). Antimalarial drugs primarily target this cycle, seeking to reduce parasite burden within the host as fast as possible and to supress recrudescence for as long as possible. Intense phenotypic drug screening efforts have identified a number of promising new antimalarial molecules. Particularly important is the identification of compounds with new modes of action within the parasite to combat existing drug resistance and suitable for formulation of efficacious combination therapies. Here we detail the antimalarial properties of DDD01034957-a novel antimalarial molecule which is fast-acting and potent against drug resistant strains in vitro, shows activity in vivo, and possesses a resistance mechanism linked to the membrane transporter PfABCI3. These data support further medicinal chemistry lead-optimization of DDD01034957 as a novel antimalarial chemical class and provide new insights to further reduce in vivo metabolic clearance.


Subject(s)
Antimalarials/pharmacology , Drug Resistance/drug effects , Malaria/drug therapy , Plasmodium falciparum/drug effects , Animals , Antimalarials/chemistry , Erythrocytes/parasitology , Host-Parasite Interactions/drug effects , Humans , Inhibitory Concentration 50 , Malaria/parasitology , Mice , Molecular Structure , Plasmodium/drug effects , Plasmodium/parasitology , Plasmodium berghei/drug effects , Plasmodium berghei/parasitology , Plasmodium falciparum/physiology , Species Specificity
7.
Cell Chem Biol ; 27(7): 806-816.e8, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32359426

ABSTRACT

The search for antimalarial chemotypes with modes of action unrelated to existing drugs has intensified with the recent failure of first-line therapies across Southeast Asia. Here, we show that the trisubstituted imidazole MMV030084 potently inhibits hepatocyte invasion by Plasmodium sporozoites, merozoite egress from asexual blood stage schizonts, and male gamete exflagellation. Metabolomic, phosphoproteomic, and chemoproteomic studies, validated with conditional knockdown parasites, molecular docking, and recombinant kinase assays, identified cGMP-dependent protein kinase (PKG) as the primary target of MMV030084. PKG is known to play essential roles in Plasmodium invasion of and egress from host cells, matching MMV030084's activity profile. Resistance selections and gene editing identified tyrosine kinase-like protein 3 as a low-level resistance mediator for PKG inhibitors, while PKG itself never mutated under pressure. These studies highlight PKG as a resistance-refractory antimalarial target throughout the Plasmodium life cycle and promote MMV030084 as a promising Plasmodium PKG-targeting chemotype.


Subject(s)
Antimalarials/pharmacology , Cyclic GMP-Dependent Protein Kinases/antagonists & inhibitors , Drug Resistance/drug effects , Plasmodium falciparum/drug effects , Protozoan Proteins/antagonists & inhibitors , Animals , Antimalarials/chemistry , Antimalarials/metabolism , Binding Sites , Cyclic GMP-Dependent Protein Kinases/metabolism , Female , Hepatocytes/cytology , Hepatocytes/metabolism , Hepatocytes/parasitology , Humans , Imidazoles/chemistry , Life Cycle Stages/drug effects , Metabolomics , Mice , Mice, Inbred BALB C , Molecular Docking Simulation , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism , Proteomics , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
8.
Cell Chem Biol ; 27(2): 158-171.e3, 2020 02 20.
Article in English | MEDLINE | ID: mdl-31813848

ABSTRACT

We report detailed susceptibility profiling of asexual blood stages of the malaria parasite Plasmodium falciparum to clinical and experimental antimalarials, combined with metabolomic fingerprinting. Results revealed a variety of stage-specific and metabolic profiles that differentiated the modes of action of clinical antimalarials including chloroquine, piperaquine, lumefantrine, and mefloquine, and identified late trophozoite-specific peak activity and stage-specific biphasic dose-responses for the mitochondrial inhibitors DSM265 and atovaquone. We also identified experimental antimalarials hitting previously unexplored druggable pathways as reflected by their unique stage specificity and/or metabolic profiles. These included several ring-active compounds, ones affecting hemoglobin catabolism through distinct pathways, and mitochondrial inhibitors with lower propensities for resistance than either DSM265 or atovaquone. This approach, also applicable to other microbes that undergo multiple differentiation steps, provides an effective tool to prioritize compounds for further development within the context of combination therapies.


Subject(s)
Antimalarials/pharmacology , Metabolome/drug effects , Metabolomics , Plasmodium falciparum/drug effects , Antimalarials/chemistry , Antimalarials/metabolism , Atovaquone/chemistry , Atovaquone/metabolism , Atovaquone/pharmacology , Drug Design , Electron Transport Chain Complex Proteins/antagonists & inhibitors , Electron Transport Chain Complex Proteins/metabolism , Humans , Life Cycle Stages/drug effects , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Malaria, Falciparum/pathology , Mitochondria/drug effects , Mitochondria/metabolism , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism , Quinolines/chemistry , Quinolines/metabolism , Quinolines/pharmacology
9.
PLoS Pathog ; 15(6): e1007722, 2019 06.
Article in English | MEDLINE | ID: mdl-31170268

ABSTRACT

Therapeutics with novel modes of action and a low risk of generating resistance are urgently needed to combat drug-resistant Plasmodium falciparum malaria. Here, we report that the peptide vinyl sulfones WLL-vs (WLL) and WLW-vs (WLW), highly selective covalent inhibitors of the P. falciparum proteasome, potently eliminate genetically diverse parasites, including K13-mutant, artemisinin-resistant lines, and are particularly active against ring-stage parasites. Selection studies reveal that parasites do not readily acquire resistance to WLL or WLW and that mutations in the ß2, ß5 or ß6 subunits of the 20S proteasome core particle or in components of the 19S proteasome regulatory particle yield only hundred-fold decreases in susceptibility. We observed no cross-resistance between WLL and WLW. Moreover, most mutations that conferred a modest loss of parasite susceptibility to one inhibitor significantly increased sensitivity to the other. These inhibitors potently synergized multiple chemically diverse classes of antimalarial agents, implicating a shared disruption of proteostasis in their modes of action. These results underscore the potential of targeting the Plasmodium proteasome with covalent small molecule inhibitors as a means of combating multidrug-resistant malaria.


Subject(s)
Antimalarials/pharmacology , Drug Resistance/drug effects , Plasmodium falciparum/enzymology , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Protozoan Proteins , Antimalarials/chemistry , Drug Resistance/genetics , Drug Synergism , Humans , Plasmodium falciparum/genetics , Proteasome Inhibitors/chemistry , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
10.
Science ; 359(6372): 191-199, 2018 01 12.
Article in English | MEDLINE | ID: mdl-29326268

ABSTRACT

Chemogenetic characterization through in vitro evolution combined with whole-genome analysis can identify antimalarial drug targets and drug-resistance genes. We performed a genome analysis of 262 Plasmodium falciparum parasites resistant to 37 diverse compounds. We found 159 gene amplifications and 148 nonsynonymous changes in 83 genes associated with drug-resistance acquisition, where gene amplifications contributed to one-third of resistance acquisition events. Beyond confirming previously identified multidrug-resistance mechanisms, we discovered hitherto unrecognized drug target-inhibitor pairs, including thymidylate synthase and a benzoquinazolinone, farnesyltransferase and a pyrimidinedione, and a dipeptidylpeptidase and an arylurea. This exploration of the P. falciparum resistome and druggable genome will likely guide drug discovery and structural biology efforts, while also advancing our understanding of resistance mechanisms available to the malaria parasite.


Subject(s)
Antimalarials/pharmacology , Drug Resistance/genetics , Genome, Protozoan , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Activation, Metabolic , Alleles , DNA Copy Number Variations , Directed Molecular Evolution , Drug Resistance, Multiple/genetics , Genes, Protozoan , Metabolomics , Mutation , Plasmodium falciparum/growth & development , Selection, Genetic , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription Factors/metabolism
11.
Nat Microbiol ; 2(10): 1403-1414, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28808258

ABSTRACT

Antimalarial compounds with dual therapeutic and transmission-blocking activity are desired as high-value partners for combination therapies. Here, we report the identification and characterization of hexahydroquinolines (HHQs) that show low nanomolar potency against both pathogenic and transmissible intra-erythrocytic forms of the malaria parasite Plasmodium falciparum. This activity translates into potent transmission-blocking potential, as shown by in vitro male gamete formation assays and reduced oocyst infection and prevalence in Anopheles mosquitoes. In vivo studies illustrated the ability of lead HHQs to suppress Plasmodium berghei blood-stage parasite proliferation. Resistance selection studies, confirmed by CRISPR-Cas9-based gene editing, identified the digestive vacuole membrane-spanning transporter PfMDR1 (P. falciparum multidrug resistance gene-1) as a determinant of parasite resistance to HHQs. Haemoglobin and haem fractionation assays suggest a mode of action that results in reduced haemozoin levels and might involve inhibition of host haemoglobin uptake into intra-erythrocytic parasites. Furthermore, parasites resistant to HHQs displayed increased susceptibility to several first-line antimalarial drugs, including lumefantrine, confirming that HHQs have a different mode of action to other antimalarials drugs for which PfMDR1 is known to confer resistance. This work evokes therapeutic strategies that combine opposing selective pressures on this parasite transporter as an approach to countering the emergence and transmission of multidrug-resistant P. falciparum malaria.


Subject(s)
Antimalarials/pharmacology , Malaria, Falciparum/drug therapy , Malaria/drug therapy , Plasmodium berghei/drug effects , Quinolines/pharmacology , Amino Acid Sequence , Animals , Anopheles , CRISPR-Cas Systems/genetics , DNA, Protozoan/genetics , DNA, Protozoan/metabolism , Drug Combinations , Drug Resistance , Endocytosis/drug effects , Ethanolamines/pharmacology , Fluorenes/pharmacology , Gene Editing , HEK293 Cells , Heme , Hemoglobins/drug effects , High-Throughput Screening Assays , Humans , Lumefantrine , Malaria/transmission , Malaria, Falciparum/blood , Malaria, Falciparum/transmission , Male , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Multidrug Resistance-Associated Proteins/drug effects , Multidrug Resistance-Associated Proteins/genetics , Mutation , Oocysts/drug effects , Plasmodium berghei/pathogenicity , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Quinolines/chemistry
12.
Mol Neurodegener ; 12(1): 35, 2017 05 05.
Article in English | MEDLINE | ID: mdl-28476168

ABSTRACT

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a debilitating neurodegenerative condition that is characterized by progressive loss of motor neurons and the accumulation of aggregated TAR DNA Binding Protein-43 (TDP-43, gene: TARDBP). Increasing evidence indicates that environmental factors contribute to the risk of ALS. Dioxins, related planar polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) are environmental contaminants that activate the aryl hydrocarbon receptor (AHR), a ligand-activated, PAS family transcription factor. Recently, exposure to these toxicants was identified as a risk factor for ALS. METHODS: We examined levels of TDP-43 reporter activity, transcript and protein. Quantification was done using cell lines, induced pluripotent stem cells (iPSCs) and mouse brain. The target samples were treated with AHR agonists, including 6-Formylindolo[3,2-b]carbazole (FICZ, a potential endogenous ligand, 2,3,7,8-tetrachlorodibenzo(p)dioxin, and benzo(a)pyrene, an abundant carcinogen in cigarette smoke). The action of the agonists was inhibited by concomitant addition of AHR antagonists or by AHR-specific shRNA. RESULTS: We now report that AHR agonists induce up to a 3-fold increase in TDP-43 protein in human neuronal cell lines (BE-M17 cells), motor neuron differentiated iPSCs, and in murine brain. Chronic treatment with AHR agonists elicits over 2-fold accumulation of soluble and insoluble TDP-43, primarily because of reduced TDP-43 catabolism. AHR antagonists or AHR knockdown inhibits agonist-induced increases in TDP-43 protein and TARDBP transcription demonstrating that the ligands act through the AHR. CONCLUSIONS: These results provide the first evidence that environmental AHR ligands increase TDP-43, which is the principle pathological protein associated with ALS. These results suggest novel molecular mechanisms through which a variety of prevalent environmental factors might directly contribute to ALS. The widespread distribution of dioxins, PCBs and PAHs is considered to be a risk factor for cancer and autoimmune diseases, but could also be a significant public health concern for ALS.


Subject(s)
Brain/drug effects , DNA-Binding Proteins/drug effects , Environmental Pollutants/adverse effects , Neurons/drug effects , Receptors, Aryl Hydrocarbon/agonists , Amyotrophic Lateral Sclerosis , Animals , Cell Line , DNA-Binding Proteins/biosynthesis , Humans , Male , Mice , Mice, Inbred C57BL , Polychlorinated Dibenzodioxins/adverse effects , Polycyclic Aromatic Hydrocarbons/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...