Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(7)2022 Apr 03.
Article in English | MEDLINE | ID: mdl-35408380

ABSTRACT

Passive radar is a technology that has huge potential for airspace monitoring, taking advantage of existing transmissions. However, to predict whether particular targets can be measured in a particular scenario, it is necessary to be able to model the received signal. In this paper, we present the results of a campaign in which a Pilatus PC-12 single-engine aircraft was measured with a passive radar system relying on DVB-T transmission from a single transmitter. We then present our work to simulate the bistatic RCS of the aircraft along its flight track, using both the method of moments and the shooting and bouncing ray solvers, assess the uncertainty in the simulations, and compare against the measurements. We find that our simulated RCS values are useful in predicting whether or not detection occurs. However, we see poor agreement between simulated and measured RCS values where measurements are available, which we attribute primarily to the difficulties in extracting RCS measurements from the data and to unmodeled transmission and received path effects.

2.
Materials (Basel) ; 15(4)2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35208040

ABSTRACT

We compared different commercially available materials that are 3D-printable for their suitability for making microwave absorbers by means of additive manufacturing, i.e., 3D printing. For this, we determined their complex permittivity, and, if applicable, the complex permeability. They are responsible for the RF losses within the material and, therefore, determine its usefulness as an absorber material. Further, we made SEM (scanning electron microscope) images of material samples showing the filling materials that have been used to achieve absorbing properties.

3.
Rev Sci Instrum ; 85(8): 084706, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25173294

ABSTRACT

This paper describes sideband response measurements and atmospheric observations with a double sideband and two Single Sideband (SSB) receiver prototypes developed for the multi-beam limb sounder instrument stratosphere-troposphere exchange and climate monitor radiometer. We first show an advanced Fourier-Transform Spectroscopy (FTS) method for sideband response and spurious signal characterization. We then present sideband response measurements of the different prototype receivers and we compare the results of the SSB receivers with sideband measurements by injecting a continuous wave signal into the upper and lower sidebands. The receivers were integrated into a total-power radiometer and atmospheric observations were carried out. The observed spectra were compared to forward model spectra to conclude on the sideband characteristics of the different receivers. The two sideband characterization methods show a high degree of agreement for both SSB receivers with various local oscillator settings. The measured sideband response was used to correct the forward model simulations. This improves the agreement with the atmospheric observations and explains spectral features caused by an unbalanced sideband response. The FTS method also allows to quantify the influence of spurious harmonic responses of the receiver.

4.
Rev Sci Instrum ; 81(10): 104702, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21034105

ABSTRACT

A spatial, electro-optical autocorrelation (EOA) interferometer using the vertically polarized lobes of coherent transition radiation (CTR) has been developed as a single-shot electron bunch length monitor at an optical beam port downstream the 100 MeV preinjector LINAC of the Swiss Light Source. This EOA monitor combines the advantages of step-scan interferometers (high temporal resolution) [D. Mihalcea et al., Phys. Rev. ST Accel. Beams 9, 082801 (2006) and T. Takahashi and K. Takami, Infrared Phys. Technol. 51, 363 (2008)] and terahertz-gating technologies [U. Schmidhammer et al., Appl. Phys. B: Lasers Opt. 94, 95 (2009) and B. Steffen et al., Phys. Rev. ST Accel. Beams 12, 032802 (2009)] (fast response), providing the possibility to tune the accelerator with an online bunch length diagnostics. While a proof of principle of the spatial interferometer was achieved by step-scan measurements with far-infrared detectors, the single-shot capability of the monitor has been demonstrated by electro-optical correlation of the spatial CTR interference pattern with fairly long (500 ps) neodymium-doped yttrium aluminum garnet (Nd:YAG) laser pulses in a ZnTe crystal. In single-shot operation, variations of the bunch length between 1.5 and 4 ps due to different phase settings of the LINAC bunching cavities have been measured with subpicosecond time resolution.

5.
Sensors (Basel) ; 10(1): 584-612, 2010.
Article in English | MEDLINE | ID: mdl-22315556

ABSTRACT

L-band (1-2 GHz) microwave radiometry is a remote sensing technique that can be used to monitor soil moisture, and is deployed in the Soil Moisture and Ocean Salinity (SMOS) Mission of the European Space Agency (ESA). Performing ground-based radiometer campaigns before launch, during the commissioning phase and during the operative SMOS mission is important for validating the satellite data and for the further improvement of the radiative transfer models used in the soil-moisture retrieval algorithms. To address these needs, three identical L-band radiometer systems were ordered by ESA. They rely on the proven architecture of the ETH L-Band radiometer for soil moisture research (ELBARA) with major improvements in the microwave electronics, the internal calibration sources, the data acquisition, the user interface, and the mechanics. The purpose of this paper is to describe the design of the instruments and the main characteristics that are relevant for the user.


Subject(s)
Environmental Monitoring/instrumentation , Radiometry/instrumentation , Remote Sensing Technology/instrumentation , Soil/analysis , Soil/chemistry , Transducers , Water/analysis , Equipment Design , Equipment Failure Analysis , Microwaves , Radiation Dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...