Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Mol Mutagen ; 52(9): 738-47, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22020836

ABSTRACT

As part of the Stage III Pig-a multilaboratory validation trial, we examined the induction of CD59-negative reticulocytes and total red blood cells (RET(CD59-) and RBC(CD59-) , respectively) in male Sprague Dawley(®) rats treated with 4-nitroquinoline-1-oxide (4NQO), for 28 consecutive days by oral gavage, at doses of 1.25, 2.50, 3.75, 5.00, and 7.50 mg kg(-1) day(-1) (the high dose group was sacrificed on Day 15 due to excessive morbidity/mortality). Animals also were evaluated for: micronucleated reticulocytes (mnRET) by flow cytometry; DNA damage in peripheral blood, liver, and stomach using the Comet assay; and chromosome aberrations (CAb) in peripheral blood lymphocytes (PBL). All endpoints were analyzed at two or more timepoints where possible. Mortality, body and organ weights, food consumption, and clinical pathology also were evaluated, and demonstrated that the maximum tolerated dose was achieved at 5.00 mg kg(-1) day(-1) . The largest increases observed for the genetic toxicology endpoints (fold-increase compared to control, where significant; all at 5.00 mg kg(-1) day(-1) on Day 29) were: RET(CD59-) (21X), RBC(CD59-) (9.0X), and mnRET (2.0X). In contrast, no significant increases were observed for the CAb or Comet response, in any tissue analyzed, at any timepoint. Because 4NQO is a well known mutagen, clastogen, and carcinogen, the lack of response for these latter endpoints was unexpected. These results emphasize the extreme care that must betaken in dose and endpoint selection when incorporating genotoxicity endpoints into routine toxicity studies as has been recommended or is under consideration by various regulatory and industrial bodies.


Subject(s)
4-Nitroquinoline-1-oxide/toxicity , Chromosome Aberrations/chemically induced , Membrane Proteins/genetics , Mutagenicity Tests , Mutagens/toxicity , Animals , Brain/drug effects , Brain/ultrastructure , CD59 Antigens/genetics , Calibration , Comet Assay/methods , Comet Assay/standards , Data Interpretation, Statistical , Dose-Response Relationship, Drug , Endpoint Determination , Erythrocytes/drug effects , Erythrocytes/metabolism , Erythrocytes/ultrastructure , Laboratories/standards , Liver/drug effects , Liver/ultrastructure , Male , Micronucleus Tests/methods , Micronucleus Tests/standards , Mutagenicity Tests/methods , Mutagenicity Tests/standards , Organ Size/drug effects , Organ Specificity , Rats , Rats, Sprague-Dawley , Reference Standards , Reproducibility of Results , Reticulocytes/drug effects , Reticulocytes/metabolism , Reticulocytes/ultrastructure , Risk Assessment , Stomach/drug effects , Stomach/ultrastructure , Time Factors
2.
J Am Acad Child Adolesc Psychiatry ; 47(12): 1375-83, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18978633

ABSTRACT

OBJECTIVE: In response to previously published findings of methylphenidate-induced chromosomal changes in children, this study was designed to determine whether methylphenidate- or amphetamine-based drugs induce chromosomal damage (structural aberrations, micronuclei, and sister chromatid exchanges) in peripheral blood lymphocytes of children with attention-deficit/hyperactivity disorder after 3 months of continuous treatment. METHOD: Stimulant drug-naïve subjects, 6 to 12 years of age, in good overall health, and judged to be appropriate candidates for stimulant therapy based on rigorously diagnosed ADHD using DSM-IV criteria, were randomized into two open-label treatment groups (methylphenidate or mixed amphetamine salts). Each subject provided a blood sample before initiation of treatment and after 3 months of treatment. Pretreatment and posttreatment frequencies of chromosomal aberrations, micronuclei, and sister chromatid exchanges were determined for each subject. RESULTS: Sixty-three subjects enrolled in the study; 47 subjects completed the full 3 months of treatment, 25 in the methylphenidate group and 22 in the amphetamine group. No significant treatment-related increases were observed in any of the three measures of cytogenetic damage in the 47 subjects who completed treatment or the 16 subjects who did not. CONCLUSIONS: Earlier findings of methylphenidate-induced chromosomal changes in children were not replicated in this study. These results add to the accumulating evidence that therapeutic levels of methylphenidate do not induce cytogenetic damage in humans. Furthermore, our results indicate that amphetamine-based products do not pose a risk for cytogenetic damage in children.


Subject(s)
Amphetamines/toxicity , Attention Deficit Disorder with Hyperactivity/drug therapy , Central Nervous System Stimulants/toxicity , Chromosome Aberrations , Methylphenidate/toxicity , Micronucleus Tests , Sister Chromatid Exchange , Amphetamines/therapeutic use , Attention Deficit Disorder with Hyperactivity/genetics , Central Nervous System Stimulants/therapeutic use , Child , Dose-Response Relationship, Drug , Female , Humans , Lymphocytes/drug effects , Lymphocytes/metabolism , Male , Methylphenidate/therapeutic use
3.
Mutat Res ; 557(1): 85-97, 2004 Jan 10.
Article in English | MEDLINE | ID: mdl-14706521

ABSTRACT

Both positive and negative effects have been found in classical genetic toxicology assays with capsaicin. However, the capsaicin tested in most studies has been derived from pepper plant extracts, which is likely to display varying degrees of purity and possibly diverse impurity profiles. Therefore, the objective of the series of studies reported here was to test the genotoxic potential of pure, synthetic trans-capsaicin (the only naturally occurring geometric isomer of capsaicin), using four genotoxicity assays widely used to evaluate drug substances. These included the Ames, mouse lymphoma cell mutation, mouse in vivo bone marrow micronucleus and chromosomal aberration in human peripheral blood lymphocytes (HPBL) assays. In the Ames assay, pure trans-capsaicin was not mutagenic to Salmonella typhimurium or Escherichia coli when dissolved in dimethylsulfoxide and tested at concentrations extending into the toxic range. trans-Capsaicin was weakly mutagenic in mouse lymphoma L5178Y cells, in the presence of S9 mix, when dissolved in dimethylsulfoxide and tested at concentrations extending into the toxic range. Limited evidence for very weak activity was also obtained in the absence of S9 mix. trans-Capsaicin did not induce micronuclei in bone marrow cells when tested to the maximum tolerated dose of 800 mg/kg per day in male and 200 mg/kg per day in female CD-1 mice using a 0 h plus 24 h oral dosing and 48 h sampling regimen. Finally, trans-capsaicin did not induce structural or numerical chromosomal aberrations when evaluated for its ability to induce clastogenicity in blood lymphocytes. Taken together, these data suggest that the genotoxic potential of pure trans-capsaicin is very low, especially as the clinical significance of weak mutagenicity in the mouse lymphoma assay for catechol-moiety containing compounds is unclear. Moreover, the different genotoxicity profiles of pure trans-capsaicin and purified chili pepper extracts suggest that the purity and source of capsaicin should always be an important consideration for toxicological evaluations.


Subject(s)
Capsaicin/toxicity , Mutagens/toxicity , Animals , Capsaicin/pharmacokinetics , Chromosome Aberrations , Female , Lymphoma/genetics , Male , Mice , Micronucleus Tests , Mutagenicity Tests , Mutation , Salmonella typhimurium/drug effects , Salmonella typhimurium/genetics , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...