Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(10)2023 May 15.
Article in English | MEDLINE | ID: mdl-37241367

ABSTRACT

It is common knowledge that using different oxygen contents in the working gas during sputtering deposition results in fabrication of indium zinc oxide (IZO) films with a wide range of optoelectronic properties. It is also important that high deposition temperature is not required to achieve excellent transparent electrode quality in the IZO films. Modulation of the oxygen content in the working gas during RF sputtering of IZO ceramic targets was used to deposit IZO-based multilayers in which the ultrathin IZO unit layers with high electron mobility (µ-IZO) alternate with ones characterized by high concentration of free electrons (n-IZO). As a result of optimizing the thicknesses of each type of unit layer, low-temperature 400 nm thick IZO multilayers with excellent transparent electrode quality, indicated by the low sheet resistance (R ≤ 8 Ω/sq.) with high transmittance in the visible range (T¯ > 83%) and a very flat multilayer surface, were obtained.

2.
Materials (Basel) ; 14(22)2021 Nov 14.
Article in English | MEDLINE | ID: mdl-34832261

ABSTRACT

The development of optoelectronic devices based on flexible organic substrates substantially decreases the possible process temperatures during all stages of device manufacturing. This makes it urgent to search for new transparent conducting oxide (TCO) materials, cheaper than traditional indium-tin oxide (ITO), for the low-temperature deposition of transparent electrodes, a necessary component of most optoelectronic devices. The article presents the results of a vertically integrated study aimed at the low-temperature production of TCO thin films based on a zinc-indium oxide (ZIO) system with acceptable functional characteristics. First, dense and conducting ceramic targets based on the (100-x) mol% (ZnO) + x mol% (In2O3) system (x = 0.5, 1.5, 2.5, 5.0, and 10.0) were synthesized by the spark plasma sintering method. The dependences of the microstructure and phase composition of the ZIO ceramic targets on the In2O3 content have been studied by powder X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy methods. Then, a set of ZIO thin films with different Zn/In ratios were obtained on unheated glass substrates by direct current (dc) magnetron sputtering of the sintered targets. Complex studies of microstructure, electrical and optical properties of the deposited films have revealed the presence of an optimal doping level (5 mol% In2O3) of the ZIO target at which the deposited TCO films, in terms of the combination of their electrical and optical properties, become comparable to the widely used expensive ITO.

3.
Materials (Basel) ; 14(9)2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33925841

ABSTRACT

The aim of this work is preparation and investigation of copper conductive paths by printing with a different type of functional ink. The solutions based on copper-containing complex compounds were used as inks instead of dispersions of metal nanoparticles. Thermal characteristics of synthesized precursors were studied by thermogravimetry in an argon atmosphere. Based on the comparison of decomposition temperature, the dimethylamine complex of copper formate was found to be more suitable precursor for the formation of copper layers. Structure and performance of this compound was studied in detail by X-ray diffraction, test of wettability, printing on flexible substrate, and electrical measurements.

SELECTION OF CITATIONS
SEARCH DETAIL
...