Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 97(9): 4039-48, 2013 May.
Article in English | MEDLINE | ID: mdl-23070652

ABSTRACT

Serine-type phage integrases catalyze unidirectional site-specific recombination between the attachment sites, attP and attB, in the phage and host bacterial genomes, respectively; these integrases and DNA target sites function efficiently when transferred into heterologous cells. We previously developed an in vivo site-specific genomic integration system based on actinophage TG1 integrase that introduces ∼2-kbp DNA into an att site inserted into a heterologous Escherichia coli genome. Here, we analyzed the TG1 integrase-mediated integrations of att site-containing ∼10-kbp DNA into the corresponding att site pre-inserted into various genomic locations; moreover, we developed a system that introduces ∼10-kbp DNA into the genome with an efficiency of ∼10(4) transformants/µg DNA. Integrations of attB-containing DNA into an attP-containing genome were more efficient than integrations of attP-containing DNA into an attB-containing genome, and integrations targeting attP inserted near the replication origin, oriC, and the E. coli "centromere" analogue, migS, were more efficient than those targeting attP within other regions of the genome. Because the genomic region proximal to the oriC and migS sites is located at the extreme poles of the cell during chromosomal segregation, the oriC-migS region may be more exposed to the cytosol than are other regions of the E. coli chromosome. Thus, accessibility of pre-inserted attP to attB-containing incoming DNA may be crucial for the integration efficiency by serine-type integrases in heterologous cells. These results may be beneficial to the development of serine-type integrases-based genomic integration systems for various bacterial species.


Subject(s)
Bacterial Proteins/genetics , Genome, Bacterial/genetics , Integrases/genetics , Viral Proteins/genetics , Biotechnology , Escherichia coli/genetics
2.
Appl Microbiol Biotechnol ; 92(2): 227-39, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21822899

ABSTRACT

Site-specific recombinases are the enzymes that catalyze site-specific recombination between two specific DNA sequences to mediate DNA integration, excision, resolution, or inversion and that play a pivotal role in the life cycles of many microorganisms including bacteria and bacteriophages. These enzymes are classified as tyrosine-type or serine-type recombinases based on whether a tyrosine or serine residue mediates catalysis. All known tyrosine-type recombinases catalyze the formation of a Holliday junction intermediate, whereas the catalytic mechanism of all known serine-type recombinases includes the 180° rotation and rejoining of cleaved substrate DNAs. Both recombinase families are further subdivided into two families; the tyrosine-type recombinases are subdivided by the recombination directionality, and the serine-type recombinases are subdivided by the protein size. Over more than two decades, many different site-specific recombinases have been applied to in vivo genome engineering, and some of them have been used successfully to mediate integration, deletion, or inversion in a wide variety of heterologous genomes, including those from bacteria to higher eukaryotes. Here, we review the recombination mechanisms of the best characterized recombinases in each site-specific recombinase family and recent advances in the application of these recombinases to genomic manipulation, especially manipulations involving site-specific gene integration into heterologous genomes.


Subject(s)
Bacteria/enzymology , DNA Nucleotidyltransferases/metabolism , Eukaryota/enzymology , Gene Targeting/instrumentation , Recombination, Genetic , Animals , Bacteria/chemistry , Bacteria/genetics , Bacteriophages/chemistry , Bacteriophages/enzymology , Bacteriophages/genetics , DNA Nucleotidyltransferases/chemistry , DNA Nucleotidyltransferases/genetics , Eukaryota/chemistry , Eukaryota/genetics , Humans
3.
Appl Microbiol Biotechnol ; 89(6): 1877-84, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21085947

ABSTRACT

Phage integrases are enzymes that catalyze unidirectional site-specific recombination between the attachment sites of phage and host bacteria, attP and attB, respectively. We recently developed an in vivo intra-molecular site-specific recombination system based on actinophage TG1 serine-type integrase that efficiently acts between attP and attB on a single plasmid DNA in heterologous Escherichia coli cells. Here, we developed an in vivo inter-molecular site-specific recombination system that efficiently acted between the att site on exogenous non-replicative plasmid DNA and the corresponding att site on endogenous plasmid or genomic DNA in E. coli cells, and the recombination efficiencies increased by a factor of ~10(1-3) in cells expressing TG1 integrase over those without. Moreover, integration of attB-containing incoming plasmid DNA into attP-inserted E. coli genome was more efficient than that of the reverse substrate configuration. Together with our previous result that purified TG1 integrase functions efficiently without auxiliary host factors in vitro, these in vivo results indicate that TG1 integrase may be able to introduce attB-containing circular DNAs efficiently into attP-inserted genomes of many bacterial species in a site-specific and unidirectional manner. This system thus may be beneficial to genome engineering for a wide variety of bacterial species.


Subject(s)
Bacteriophages/enzymology , Genetics, Microbial/methods , Genome, Bacterial , Integrases/metabolism , Mutagenesis, Insertional/methods , Recombination, Genetic , Viral Proteins/metabolism , Attachment Sites, Microbiological , Escherichia coli/genetics , Plasmids
SELECTION OF CITATIONS
SEARCH DETAIL
...