Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-37961635

ABSTRACT

As genetic studies continue to identify risk loci that are significantly associated with risk for neuropsychiatric disease, a critical unanswered question is the extent to which diverse mutations--sometimes impacting the same gene-- will require tailored therapeutic strategies. Here we consider this in the context of rare neuropsychiatric disorder-associated copy number variants (2p16.3) resulting in heterozygous deletions in NRXN1, a pre-synaptic cell adhesion protein that serves as a critical synaptic organizer in the brain. Complex patterns of NRXN1 alternative splicing are fundamental to establishing diverse neurocircuitry, vary between the cell types of the brain, and are differentially impacted by unique (non-recurrent) deletions. We contrast the cell-type-specific impact of patient-specific mutations in NRXN1 using human induced pluripotent stem cells, finding that perturbations in NRXN1 splicing result in divergent cell-type-specific synaptic outcomes. Via distinct loss-of-function (LOF) and gain-of-function (GOF) mechanisms, NRXN1+/- deletions cause decreased synaptic activity in glutamatergic neurons, yet increased synaptic activity in GABAergic neurons. Stratification of patients by LOF and GOF mechanisms will facilitate individualized restoration of NRXN1 isoform repertoires; towards this, antisense oligonucleotides knockdown mutant isoform expression and alters synaptic transcriptional signatures, while treatment with ß-estradiol rescues synaptic function in glutamatergic neurons. Given the increasing number of mutations predicted to engender both LOF and GOF mechanisms in brain disease, our findings add nuance to future considerations of precision medicine.

2.
J Biol Chem ; 299(5): 104709, 2023 05.
Article in English | MEDLINE | ID: mdl-37060996

ABSTRACT

Neurodegenerative diseases are characterized by a decline in neuronal function and structure, leading to neuronal death. Understanding the molecular mechanisms of neuronal death is crucial for developing therapeutics. MiRs are small noncoding RNAs that regulate gene expression by degrading target mRNAs or inhibiting translation. MiR dysregulation has been linked to many neurodegenerative diseases, but the underlying mechanisms are not well understood. As mitochondrial dysfunction is one of the common molecular mechanisms leading to neuronal death in many neurodegenerative diseases, here we studied miRs that modulate neuronal death caused by 1-methyl-4-phenylpyridinium (MPP+), an inhibitor of complex I in mitochondria. We identified miR-593-5p, levels of which were increased in SH-SY5Y human neuronal cells, after exposure to MPP+. We found that intracellular Ca2+, but not of reactive oxygen species, mediated this miR-593-5p increase. Furthermore, we found the increase in miR-593-5p was due to enhanced stability, not increased transcription or miR processing. Importantly, we show the increase in miR-593-5p contributed to MPP+-induced cell death. Our data revealed that miR-593-5p inhibits a signaling pathway involving PTEN-induced putative kinase 1 (PINK1) and Parkin, two proteins responsible for the removal of damaged mitochondria from cells, by targeting the coding sequence of PINK1 mRNA. Our findings suggest that miR-593-5p contributes to neuronal death resulting from MPP+ toxicity, in part, by impeding the PINK1/Parkin-mediated pathway that facilitates the clearance of damaged mitochondria. Taken together, our observations highlight the potential significance of inhibiting miR-593-5p as a therapeutic approach for neurodegenerative diseases.


Subject(s)
MicroRNAs , Neuroblastoma , Protein Kinases , Humans , 1-Methyl-4-phenylpyridinium/toxicity , Apoptosis , Cell Death , Cell Line, Tumor , MicroRNAs/genetics , MicroRNAs/metabolism , Neuroblastoma/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/genetics
3.
Biochem Biophys Res Commun ; 573: 80-85, 2021 10 08.
Article in English | MEDLINE | ID: mdl-34399097

ABSTRACT

Spinal cord injury (SCI) is a devastating neurological condition for which there are no effective therapies. Following an initial injury, there is a cascade of multiple downstream events termed secondary injury. Thus, therapeutic approaches targeting a single pathway may not offer the best solution for treating SCI. One of the most attractive properties of microRNAs (miR) as potential therapeutics is that they are highly effective in regulating complex biological pathways by targeting multiple genes and pathways. The current study investigated the role of miR-7-5p (miR-7), which was previously shown to have neuroprotective functions, in promoting motor function recovery following SCI. We used an adeno-associated virus 1 (AAV1) vector to deliver the gene encoding miR-7 to the spinal cord of adult mice and found that this virus was mainly transduced into the neurons of the spinal cord. Transduction of AAV1-miR-7 improved hindlimb locomotor function following SCI over an 8-week observation period. This improvement was accompanied by reduced neuronal loss in the lesion. In addition, the beneficial effect of miR-7 was associated with enhanced levels of TH-positive axons in the lesion. Taken together, we suggest that miR-7 improves motor function recovery after SCI by protecting neuronal death and increasing axon levels. These findings suggest that miR-7 could be developed as a potential treatment for SCI in human.


Subject(s)
MicroRNAs/metabolism , Spinal Cord Injuries/metabolism , Animals , Female , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Motor Activity , Recovery of Function , Spinal Cord Injuries/pathology
4.
Stem Cell Reports ; 16(3): 505-518, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33636110

ABSTRACT

The host response to SARS-CoV-2, the etiologic agent of the COVID-19 pandemic, demonstrates significant interindividual variability. In addition to showing more disease in males, the elderly, and individuals with underlying comorbidities, SARS-CoV-2 can seemingly afflict healthy individuals with profound clinical complications. We hypothesize that, in addition to viral load and host antibody repertoire, host genetic variants influence vulnerability to infection. Here we apply human induced pluripotent stem cell (hiPSC)-based models and CRISPR engineering to explore the host genetics of SARS-CoV-2. We demonstrate that a single-nucleotide polymorphism (rs4702), common in the population and located in the 3' UTR of the protease FURIN, influences alveolar and neuron infection by SARS-CoV-2 in vitro. Thus, we provide a proof-of-principle finding that common genetic variation can have an impact on viral infection and thus contribute to clinical heterogeneity in COVID-19. Ongoing genetic studies will help to identify high-risk individuals, predict clinical complications, and facilitate the discovery of drugs.


Subject(s)
COVID-19/genetics , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide/genetics , 3' Untranslated Regions/genetics , Adolescent , Adult , Animals , COVID-19/virology , Cell Line , Chlorocebus aethiops , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Female , Furin/genetics , Host-Pathogen Interactions/genetics , Humans , Induced Pluripotent Stem Cells/virology , Male , Neurons/virology , Peptide Hydrolases/genetics , SARS-CoV-2/pathogenicity , Vero Cells
5.
bioRxiv ; 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32995783

ABSTRACT

The host response to SARS-CoV-2, the etiologic agent of the COVID-19 pandemic, demonstrates significant inter-individual variability. In addition to showing more disease in males, the elderly, and individuals with underlying comorbidities, SARS-CoV-2 can seemingly render healthy individuals with profound clinical complications. We hypothesize that, in addition to viral load and host antibody repertoire, host genetic variants also impact vulnerability to infection. Here we apply human induced pluripotent stem cell (hiPSC)-based models and CRISPR-engineering to explore the host genetics of SARS-CoV-2. We demonstrate that a single nucleotide polymorphism (rs4702), common in the population at large, and located in the 3'UTR of the protease FURIN, impacts alveolar and neuron infection by SARS-CoV-2 in vitro. Thus, we provide a proof-of-principle finding that common genetic variation can impact viral infection, and thus contribute to clinical heterogeneity in SARS-CoV-2. Ongoing genetic studies will help to better identify high-risk individuals, predict clinical complications, and facilitate the discovery of drugs that might treat disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...