Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biofabrication ; 14(3)2022 04 12.
Article in English | MEDLINE | ID: mdl-35344942

ABSTRACT

Recently developed modular bioassembly techniques hold tremendous potential in tissue engineering and regenerative medicine, due to their ability to recreate the complex microarchitecture of native tissue. Here, we developed a novel approach to fabricate hybrid tissue-engineered constructs adopting high-throughput microfluidic and 3D bioassembly strategies. Osteochondral tissue fabrication was adopted as an example in this study, because of the challenges in fabricating load bearing osteochondral tissue constructs with phenotypically distinct zonal architecture. By developing cell-instructive chondrogenic and osteogenic bioink microsphere modules in high-throughput, together with precise manipulation of the 3D bioassembly process, we successfully fabricated hybrid engineered osteochondral tissuein vitrowith integrated but distinct cartilage and bone layers. Furthermore, by encapsulating allogeneic umbilical cord blood-derived mesenchymal stromal cells, and demonstrating chondrogenic and osteogenic differentiation, the hybrid biofabrication of hydrogel microspheres in this 3D bioassembly model offers potential for an off-the-shelf, single-surgery strategy for osteochondral tissue repair.


Subject(s)
Cartilage, Articular , Hematopoietic Stem Cell Transplantation , Mesenchymal Stem Cells , Cell Differentiation , Chondrogenesis , Hydrogels , Microspheres , Osteogenesis , Tissue Engineering/methods , Tissue Scaffolds
2.
Adv Mater ; 34(20): e2107759, 2022 May.
Article in English | MEDLINE | ID: mdl-35128736

ABSTRACT

The field of bioprinting has made significant advancements in recent years and allowed for the precise deposition of biomaterials and cells. However, within this field lies a major challenge, which is developing high resolution constructs, with complex architectures. In an effort to overcome these challenges a biofabrication technique known as vat polymerization is being increasingly investigated due to its high fabrication accuracy and control of resolution (µm scale). Despite the progress made in developing hydrogel precursors for bioprinting techniques, such as extrusion-based bioprinting, there is a major lack in developing hydrogel precursor bioresins for vat polymerization. This is due to the specific unique properties and characteristics required for vat polymerization, from lithography to the latest volumetric printing. This is of major concern as the shortage of bioresins available has a significant impact on progressing this technology and exploring its full potential, including speed, resolution, and scale. Therefore, this review discusses the key requirements that need to be addressed in successfully developing a bioresin. The influence of monomer architecture and bioresin composition on printability is described, along with key fundamental parameters that can be altered to increase printing accuracy. Finally, recent advancements in bioresins are discussed together with future directions.


Subject(s)
Bioprinting , Tissue Engineering , Bioprinting/methods , Hydrogels , Polymerization , Printing, Three-Dimensional , Tissue Engineering/methods , Tissue Scaffolds
3.
Adv Healthc Mater ; 11(2): e2101873, 2022 01.
Article in English | MEDLINE | ID: mdl-34710291

ABSTRACT

The principle challenge for engineering viable, cell-laden hydrogel constructs of clinically-relevant size, is rapid vascularization, in order to moderate the finite capacity of passive nutrient diffusion. A multiscale vascular approach, with large open channels and bulk microcapillaries may be an admissible approach to accelerate this process, promoting overall pre-vascularization for long-term viability of constructs. However, the limited availability of bioinks that possess suitable characteristics that support both fabrication of complex architectures and formation of microcapillaries, remains a barrier to advancement in this space. In this study, gelatin-norbornene (Gel-NOR) is investigated as a vascular bioink with tailorable physico-mechanical properties, which promoted the self-assembly of human stromal and endothelial cells into microcapillaries, as well as being compatible with extrusion and lithography-based biofabrication modalities. Gel-NOR constructs containing self-assembled microcapillaries are successfully biofabricated with varying physical architecture (fiber diameter, spacing, and orientation). Both channel sizes and cell types affect the overall structural changes of the printed constructs, where cross-signaling between both human stromal and endothelial cells may be responsible for the reduction in open channel lumen observed over time. Overall, this work highlights an exciting three-way interplay between bioink formulation, construct design, and cell-mediated response that can be exploited towards engineering vascular tissues.


Subject(s)
Bioprinting , Capillaries , Gelatin , Tissue Engineering , Capillaries/growth & development , Endothelial Cells , Gelatin/chemistry , Humans , Hydrogels/chemistry , Norbornanes/chemistry , Printing, Three-Dimensional , Tissue Scaffolds/chemistry
4.
Stem Cells Transl Med ; 10(11): 1500-1515, 2021 11.
Article in English | MEDLINE | ID: mdl-34387402

ABSTRACT

The paracrine signaling, immunogenic properties and possible applications of mesenchymal stromal cells (MSCs) for cartilage tissue engineering and regenerative medicine therapies have been investigated through numerous in vitro, animal model and clinical studies. The emerging knowledge largely supports the concept of MSCs as signaling and modulatory cells, exerting their influence through trophic and immune mediation rather than as a cell replacement therapy. The virtues of allogeneic cells as a ready-to-use product with well-defined characteristics of cell surface marker expression, proliferative ability, and differentiation capacity are well established. With clinical applications in mind, a greater focus on allogeneic cell sources is evident, and this review summarizes the latest published and upcoming clinical trials focused on cartilage regeneration adopting allogeneic and autologous cell sources. Moreover, we review the current understanding of immune modulatory mechanisms and the role of trophic factors in articular chondrocyte-MSC interactions that offer feasible targets for evaluating MSC activity in vivo within the intra-articular environment. Furthermore, bringing labeling and tracking techniques to the clinical setting, while inherently challenging, will be extremely informative as clinicians and researchers seek to bolster the case for the safety and efficacy of allogeneic MSCs. We therefore review multiple promising approaches for cell tracking and labeling, including both chimerism studies and imaging-based techniques, that have been widely explored in vitro and in animal models. Understanding the distribution and persistence of transplanted MSCs is necessary to fully realize their potential in cartilage regeneration techniques and tissue engineering applications.


Subject(s)
Cartilage, Articular , Hematopoietic Stem Cell Transplantation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Animals , Cell Differentiation , Chondrogenesis , Mesenchymal Stem Cell Transplantation/methods , Tissue Engineering/methods
5.
Adv Mater ; 33(35): e2102153, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34278618

ABSTRACT

3D printing has emerged as an enabling approach in a variety of different fields. However, the bulk volume of printing systems limits the expansion of their applications. In this study, a portable 3D Digital Light Processing (DLP) printer is built based on a smartphone-powered projector and a custom-written smartphone-operated app. Constructs with detailed surface architectures, porous features, or hollow structures, as well as sophisticated tissue analogs, are successfully printed using this platform, by utilizing commercial resins as well as a range of hydrogel-based inks, including poly(ethylene glycol)-diacrylate, gelatin methacryloyl, or allylated gelatin. Moreover, due to the portability of the unique DLP printer, medical implants can be fabricated for point-of-care usage, and cell-laden tissues can be produced in situ, achieving a new milestone for mobile-health technologies. Additionally, the all-in-one printing system described herein enables the integration of the 3D scanning smartphone app to obtain object-derived 3D digital models for subsequent printing. Along with further developments, this portable, modular, and easy-to-use smartphone-enabled DLP printer is anticipated to secure exciting opportunities for applications in resource-limited and point-of-care settings not only in biomedicine but also for home and educational purposes.

6.
Annu Rev Biomed Eng ; 21: 495-521, 2019 06 04.
Article in English | MEDLINE | ID: mdl-30969794

ABSTRACT

The treatment of meniscus injuries has recently been facing a paradigm shift toward the field of tissue engineering, with the aim of regenerating damaged and diseased menisci as opposed to current treatment techniques. This review focuses on the structure and mechanics associated with the meniscus. The meniscus is defined in terms of its biological structure and composition. Biomechanics of the meniscus are discussed in detail, as an understanding of the mechanics is fundamental for the development of new meniscal treatment strategies. Key meniscal characteristics such as biological function, damage (tears), and disease are critically analyzed. The latest technologies behind meniscal repair and regeneration are assessed.


Subject(s)
Osteoarthritis, Knee/pathology , Osteoarthritis, Knee/surgery , Tibial Meniscus Injuries/pathology , Tibial Meniscus Injuries/surgery , Tissue Engineering/methods , Biomechanical Phenomena , Compressive Strength/physiology , Humans , Menisci, Tibial/anatomy & histology , Menisci, Tibial/physiology , Orthopedic Procedures/methods , Orthopedic Procedures/trends , Osteoarthritis, Knee/physiopathology , Regeneration/physiology , Tensile Strength/physiology , Tibial Meniscus Injuries/physiopathology , Tissue Engineering/trends , Tissue Scaffolds
7.
J Mech Behav Biomed Mater ; 94: 186-192, 2019 06.
Article in English | MEDLINE | ID: mdl-30901606

ABSTRACT

Menisci play a major role in the mechanical function of the knee. They are subjected to large compressive forces and as a result and due to its avascular structure, menisci are prone to irreparable damage. Meniscectomy was once a common procedure for damaged menisci, however alternative approaches involving meniscus regeneration to restore function are of current interest. In order to enable these regenerative strategies, it is of utmost importance to initially establish he structure/property/function relationships of native menisci. Therefore, this study explores the influence of major constituents of the meniscal extracellular matrix; namely the glycosaminoglycan (GAG), and the collagen fibre orientation on the mechanical properties of the bovine meniscus. GAG distribution and mechanical properties are mapped with respect to depth and regional variance within the meniscus. Results show that the inner zone of the meniscus has a significantly larger quantity of GAG compared to the peripheral zone. The tibial and femoral layers contain a higher quantity of GAG than the mid-section and collagen fibre alignment differed depending on region. Overall, it was established that the viscoelastic properties of the meniscus are determined by the co-dependent relationship between the solid and fluid fractions of the meniscus and this varied depending on region. The hydrophilic nature of the GAG molecules play an important role in maintaining the solid/fluid balance while collagen fibre orientation restricts fluid flow within tissue, combined these processes act to support the meniscus under compressive loads.


Subject(s)
Glycosaminoglycans/metabolism , Mechanical Phenomena , Meniscus/metabolism , Animals , Biomechanical Phenomena , Cattle , Collagen/metabolism , Compressive Strength , Weight-Bearing
SELECTION OF CITATIONS
SEARCH DETAIL
...