Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Conserv Physiol ; 11(1): coad006, 2023.
Article in English | MEDLINE | ID: mdl-36911047

ABSTRACT

Parasitism is an energetically costly event for host species. Dynamic energy budget (DEB) theory describes the metabolic dynamics of an individual organism through its lifetime. Models derived from DEB theory specify how an organism converts food to reserves (maintenance-free energy available for metabolism) and allocates mobilized reserves to maintenance, growth (increase of structural body mass) and maturation or reproduction. DEB models thus provide a useful approach to describe the consequences of parasitism for host species. We developed a DEB model for siscowet lake trout and modeled the impact of sea lamprey parasitism on growth and reproduction using data collected from studies documenting the long-term effects following a non-lethal sea lamprey attack. The model was parameterized to reflect the changes in allocation of energy towards growth and reproduction observed in lake trout following sea lamprey parasitism and includes an estradiol module that describes the conversion of reproductive reserves to ovarian mass based on estradiol concentration. In our DEB model, parasitism increased somatic and maturity maintenance costs, reduced estradiol and decreased the estradiol-mediated conversion efficiency of reproductive reserves to ovarian mass. Muscle lipid composition of lake trout influenced energy mobilization from the reserve (efficiency of converting reserves allocated to reproduction into eggs) and reproductive efficiency. These model changes accurately reflect observed empirical changes to ovarian mass and growth. This model provides a plausible explanation of the energetic mechanisms that lead to skipped spawning following sea lamprey parasitism and could be used in population models to explore sublethal impacts of sea lamprey parasitism and other stressors on population dynamics.

2.
Bull Environ Contam Toxicol ; 110(1): 32, 2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36583746

ABSTRACT

An accurate analytical method was developed to determine selected per- and polyfluorinated alkyl substances (PFAS) at the level of parts per trillion (ppt or ng/L) in drinking water. The method included a concentration step using solid phase extraction (SPE) approach in combination with a liquid chromatography-tandem mass spectrometry system (LC-MS/MS). This method was optimized and validated for the common PFAS contaminants in drinking water. An initial demonstration of capability was established with an acceptable initial calibration, minimum reporting limit (MRL), limit of detection (LOD), initial demonstration of low system background, and initial demonstration of precision (IDP). Isotopically labeled internal standards were used for quantification. Surrogate standards were used to monitor method performance. The current method will help in better understanding of PFAS crisis by providing an efficient measurement of PFAS in water. In this study, the recoveries of four surrogates were between 84 and 113%, and calculated limit of detection (DL) and minimum reporting limits (MRL) were generally 1.0-3.0 and 5-10 ng/L, respectively.


Subject(s)
Drinking Water , Fluorocarbons , Water Pollutants, Chemical , Drinking Water/analysis , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Solid Phase Extraction/methods , Fluorocarbons/analysis , Chromatography, High Pressure Liquid/methods , Water Pollutants, Chemical/analysis
3.
Article in English | MEDLINE | ID: mdl-36325881

ABSTRACT

Problem formulation (PF) is a critical initial step in planning risk assessments for chemical exposures to wildlife, used either explicitly or implicitly in various jurisdictions to include registration of new pesticides, evaluation of new and existing chemicals released to the environment, and characterization of impact when chemical releases have occurred. Despite improvements in our understanding of the environment, ecology, and biological sciences, few risk assessments have used this information to enhance their value and predictive capabilities. In addition to advances in organism-level mechanisms and methods, there have been substantive developments that focus on population- and systems-level processes. Although most of the advances have been recognized as being state-of-the-science for two decades or more, there is scant evidence that they have been incorporated into wildlife risk assessment or risk assessment in general. In this article, we identify opportunities to consider elevating the relevance of wildlife risk assessments by focusing on elements of the PF stage of risk assessment, especially in the construction of conceptual models and selection of assessment endpoints that target population- and system-level endpoints. Doing so will remain consistent with four established steps of existing guidance: (1) establish clear protection goals early in the process; (2) consider how data collection using new methods will affect decisions, given all possibilities, and develop a decision plan a priori; (3) engage all relevant stakeholders in creating a robust, holistic conceptual model that incorporates plausible stressors that could affect the targets defined in the protection goals; and (4) embrace the need for iteration throughout the PF steps (recognizing that multiple passes may be required before agreeing on a feasible plan for the rest of the risk assessment). Integr Environ Assess Manag 2022;00:1-16. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC). This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

4.
Environ Sci Technol ; 56(6): 3514-3523, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35201763

ABSTRACT

Fish swimming behavior is a commonly measured response in aquatic ecotoxicology because behavior is considered a whole organism-level effect that integrates many sensory systems. Recent advancements in animal behavior models, such as hidden Markov chain models (HMM), suggest an improved analytical approach for toxicology. Using both new and traditional approaches, we examined the sublethal effects of PCB126 and methylmercury on yellow perch (YP) larvae (Perca flavescens) using three doses. Both approaches indicate larvae increase activity after exposure to either chemical. The middle methylmercury-dosed larvae showed multiple altered behavior patterns. First, larvae had a general increase in activity, typically performing more behavior states, more time swimming, and more swimming bouts per second. Second, when larvae were in a slow or medium swimming state, these larvae tended to switch between these states more often. Third, larvae swam slower during the swimming bouts. The upper PCB126-dosed larvae exhibited a higher proportion and a fast swimming state, but the total time spent swimming fast decreased. The middle PCB126-dosed larvae transitioned from fast to slow swimming states less often than the control larvae. These results indicate that developmental exposure to very low doses of these neurotoxicants alters YP larvae overall swimming behaviors, suggesting neurodevelopment alteration.


Subject(s)
Methylmercury Compounds , Perches , Animals , Larva , Markov Chains , Methylmercury Compounds/toxicity , Perches/physiology , Swimming
5.
Integr Comp Biol ; 62(1): 104-120, 2022 08 13.
Article in English | MEDLINE | ID: mdl-35026028

ABSTRACT

The energetic demands of stressors like parasitism require hosts to reallocate energy away from normal physiological processes to survive. Life history theory provides predictions about how hosts will reallocate energy following parasitism, but few studies provide empirical evidence to test these predictions. We examined the sub-lethal effects of sea lamprey parasitism on lean and siscowet lake charr, two ecomorphs with different life history strategies. Leans are shorter lived, faster growing, and reach reproductive maturity earlier than siscowets. Following a parasitism event of 4 days, we assessed changes to energy allocation by monitoring endpoints related to reproduction, energy storage, and growth. Results indicate that lean and siscowet lake charr differ considerably in their response to parasitism. Severely parasitized leans slightly increased their reproductive effort and maintained growth and energy storage, consistent with expectations based on life history that leans are less likely to survive parasitism and have shorter lifespans than siscowets making investing in immediate reproduction more adaptive. Siscowets nearly ceased reproduction following severe parasitism and showed evidence of altered energy storage, consistent with a strategy that favors maximizing long-term reproductive success. These findings suggest that life history can be used to generalize stressor response between populations and can aid management efforts.


Subject(s)
Petromyzon , Trout , Animals , Lakes , Reproduction/physiology , Symbiosis
6.
Integr Comp Biol ; 61(6): 1991-2010, 2022 02 05.
Article in English | MEDLINE | ID: mdl-34021749

ABSTRACT

Many biological systems across scales of size and complexity exhibit a time-varying complex network structure that emerges and self-organizes as a result of interactions with the environment. Network interactions optimize some intrinsic cost functions that are unknown and involve for example energy efficiency, robustness, resilience, and frailty. A wide range of networks exist in biology, from gene regulatory networks important for organismal development, protein interaction networks that govern physiology and metabolism, and neural networks that store and convey information to networks of microbes that form microbiomes within hosts, animal contact networks that underlie social systems, and networks of populations on the landscape connected by migration. Increasing availability of extensive (big) data is amplifying our ability to quantify biological networks. Similarly, theoretical methods that describe network structure and dynamics are being developed. Beyond static networks representing snapshots of biological systems, collections of longitudinal data series can help either at defining and characterizing network dynamics over time or analyzing the dynamics constrained to networked architectures. Moreover, due to interactions with the environment and other biological systems, a biological network may not be fully observable. Also, subnetworks may emerge and disappear as a result of the need for the biological system to cope with for example invaders or new information flows. The confluence of these developments renders tractable the question of how the structure of biological networks predicts and controls network dynamics. In particular, there may be structural features that result in homeostatic networks with specific higher-order statistics (e.g., multifractal spectrum), which maintain stability over time through robustness and/or resilience to perturbation. Alternative, plastic networks may respond to perturbation by (adaptive to catastrophic) shifts in structure. Here, we explore the opportunity for discovering universal laws connecting the structure of biological networks with their function, positioning them on the spectrum of time-evolving network structure, that is, dynamics of networks, from highly stable to exquisitely sensitive to perturbation. If such general laws exist, they could transform our ability to predict the response of biological systems to perturbations-an increasingly urgent priority in the face of anthropogenic changes to the environment that affect life across the gamut of organizational scales.


Subject(s)
Algorithms , Animals , Homeostasis
7.
Environ Toxicol Chem ; 39(10): 1998-2007, 2020 10.
Article in English | MEDLINE | ID: mdl-32667689

ABSTRACT

Coal ash contains numerous contaminants and is the focus of regulatory actions and risk assessments due to environmental spills. We exposed Daphnia magna to a gradient of coal ash contamination under high and low food rations to assess the sublethal effects of dietary exposures. Whereas exposure to contaminants resulted in significant reductions in growth and reproduction in daphnids, low, environmentally relevant food rations had a much greater effect on these endpoints. Environ Toxicol Chem 2020;39:1998-2007. © 2020 SETAC.


Subject(s)
Coal Ash/toxicity , Daphnia/drug effects , Dietary Exposure/adverse effects , Water Pollutants, Chemical/toxicity , Animals , Bioaccumulation/drug effects , Coal Ash/metabolism , Daphnia/growth & development , Dietary Exposure/analysis , Models, Theoretical , Reproduction/drug effects , Water Pollutants, Chemical/metabolism
9.
Environ Toxicol Chem ; 38(9): 1850-1865, 2019 09.
Article in English | MEDLINE | ID: mdl-31127958

ABSTRACT

An important goal in toxicology is the development of new ways to increase the speed, accuracy, and applicability of chemical hazard and risk assessment approaches. A promising route is the integration of in vitro assays with biological pathway information. We examined how the adverse outcome pathway (AOP) framework can be used to develop pathway-based quantitative models useful for regulatory chemical safety assessment. By using AOPs as initial conceptual models and the AOP knowledge base as a source of data on key event relationships, different methods can be applied to develop computational quantitative AOP models (qAOPs) relevant for decision making. A qAOP model may not necessarily have the same structure as the AOP it is based on. Useful AOP modeling methods range from statistical, Bayesian networks, regression, and ordinary differential equations to individual-based models and should be chosen according to the questions being asked and the data available. We discuss the need for toxicokinetic models to provide linkages between exposure and qAOPs, to extrapolate from in vitro to in vivo, and to extrapolate across species. Finally, we identify best practices for modeling and model building and the necessity for transparent and comprehensive documentation to gain confidence in the use of qAOP models and ultimately their use in regulatory applications. Environ Toxicol Chem 2019;38:1850-1865. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Subject(s)
Ecotoxicology/methods , Hazardous Substances/toxicity , Models, Theoretical , Adverse Outcome Pathways , Animals , Bayes Theorem , Decision Making , Hazardous Substances/pharmacokinetics , Humans , Research Design , Risk Assessment , Toxicokinetics
10.
Funct Ecol ; 33(5): 819-832, 2019 May 01.
Article in English | MEDLINE | ID: mdl-32038063

ABSTRACT

1. The simple bioenergetic models in the family of Dynamic Energy Budget (DEB) consist of a small number of state equations quantifying universal processes, such as feeding, maintenance, development, reproduction and growth. Linking these organismal level processes to underlying suborganismal mechanisms at the molecular, cellular and organ level constitutes a major challenge for predictive ecological risk assessments. 2. Motivated by the need for process-based models to evaluate the impact of endocrine disruptors on ecologically relevant endpoints, this paper develops and evaluates two general modeling modules describing demand-driven feedback mechanisms exerted by gonads on the allocation of resources to production of reproductive matter within the DEB modeling framework. 3. These modules describe iteroparous, semelparous and batch-mode reproductive strategies. The modules have a generic form with both positive and negative feedback components; species and sex specific attributes of endocrine regulation can be added without changing the core of the modules. 4. We demonstrate that these modules successfully describe time-resolved measurements of wet weight of body, ovaries and liver, egg diameter and plasma content of vitellogenin and estradiol in rainbow trout (Oncorynchus mykiss) by fitting these models to published and new data, which require the estimation of less than two parameters per data type. 5. We illustrate the general applicability of the concept of demand-driven allocation of resources to reproduction as worked out in this paper by evaluating one of the modules with data on growth and seed production of an annual plant, the common bean (Phaseolis vulgaris).

11.
Environ Toxicol Chem ; 38(1): 12-26, 2019 01.
Article in English | MEDLINE | ID: mdl-30570782

ABSTRACT

In 2007 the United States National Research Council (NRC) published a vision for toxicity testing in the 21st century that emphasized the use of in vitro high-throughput screening (HTS) methods and predictive models as an alternative to in vivo animal testing. In the present study we examine the state of the science of HTS and the progress that has been made in implementing and expanding on the NRC vision, as well as challenges to implementation that remain. Overall, significant progress has been made with regard to the availability of HTS data, aggregation of chemical property and toxicity information into online databases, and the development of various models and frameworks to support extrapolation of HTS data. However, HTS data and associated predictive models have not yet been widely applied in risk assessment. Major barriers include the disconnect between the endpoints measured in HTS assays and the assessment endpoints considered in risk assessments as well as the rapid pace at which new tools and models are evolving in contrast with the slow pace at which regulatory structures change. Nonetheless, there are opportunities for environmental scientists and policymakers alike to take an impactful role in the ongoing development and implementation of the NRC vision. Six specific areas for scientific coordination and/or policy engagement are identified. Environ Toxicol Chem 2019;38:12-26. Published 2018 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Subject(s)
High-Throughput Screening Assays/methods , Risk Assessment , Animals , Environmental Pollutants/analysis , Humans , Models, Theoretical , Toxicity Tests
12.
Curr Protoc Mol Biol ; 123(1): e61, 2018 07.
Article in English | MEDLINE | ID: mdl-29953734

ABSTRACT

This article describes how to analyze protein expression in cells infected with recombinant baculovirus on a small scale for optimizing protein production, how to maximize and scale up recombinant protein production, and how to purify recombinant proteins. © 2018 by John Wiley & Sons, Inc.


Subject(s)
Proteins/isolation & purification , Recombinant Proteins/biosynthesis , Animals , Baculoviridae/genetics , Gene Expression , Genetic Techniques , Protein Biosynthesis , Sf9 Cells
13.
Integr Environ Assess Manag ; 14(5): 615-624, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29870141

ABSTRACT

A working group at the National Institute for Mathematical and Biological Synthesis (NIMBioS) explored the feasibility of integrating 2 complementary approaches relevant to ecological risk assessment. Adverse outcome pathway (AOP) models provide "bottom-up" mechanisms to predict specific toxicological effects that could affect an individual's ability to grow, reproduce, and/or survive from a molecular initiating event. Dynamic energy budget (DEB) models offer a "top-down" approach that reverse engineers stressor effects on growth, reproduction, and/or survival into modular characterizations related to the acquisition and processing of energy resources. Thus, AOP models quantify linkages between measurable molecular, cellular, or organ-level events, but they do not offer an explicit route to integratively characterize stressor effects at higher levels of organization. While DEB models provide the inherent basis to link effects on individuals to those at the population and ecosystem levels, their use of abstract variables obscures mechanistic connections to suborganismal biology. To take advantage of both approaches, we developed a conceptual model to link DEB and AOP models by interpreting AOP key events as measures of damage-inducing processes affecting DEB variables and rates. We report on the type and structure of data that are generated for AOP models that may also be useful for DEB models. We also report on case studies under development that merge information collected for AOPs with DEB models and highlight some of the challenges. Finally, we discuss how the linkage of these 2 approaches can improve ecological risk assessment, with possibilities for progress in predicting population responses to toxicant exposures within realistic environments. Integr Environ Assess Manag 2018;14:615-624. © 2018 SETAC.


Subject(s)
Ecosystem , Environmental Monitoring/methods , Ecology , Models, Theoretical , Risk Assessment
14.
Chemosphere ; 195: 301-311, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29272799

ABSTRACT

The purpose of this study was to evaluate the effects of environmentally relevant dietary MeHg exposures on adult female yellow perch (Perca flavescens) and female zebrafish (Danio rerio) ovarian development and reproduction. Yellow perch were used in the study for their socioeconomic and ecological importance within the Great Lakes basin, and the use of zebrafish allowed for a detailed analysis of the molecular effects of MeHg following a whole life-cycle exposure. Chronic whole life dietary exposure of F1 zebrafish to MeHg mimics realistic wildlife exposure scenarios, and the twenty-week adult yellow perch exposure (where whole life-cycle exposures are difficult) captures early seasonal ovarian development. For both species, target dietary accumulation values were achieved prior to analyses. In zebrafish, several genes involved in reproductive processes were shown to be dysregulated by RNA-sequencing and quantitative real-time polymerase chain reaction (QPCR), but no significant phenotypic changes were observed regarding ovarian staging, fecundity, or embryo mortality. Yellow perch were exposed to dietary MeHg for 12, 16, or 20 weeks. In this species, a set of eight genes were assessed by QPCR in the pituitary, liver, and ovary, and no exposure-related changes were observed. The lack of genomic resources in yellow perch hinders the characterization of subtle molecular impacts. The ovarian somatic index, circulating estradiol and testosterone, and ovarian staging were not significantly altered by MeHg exposure in yellow perch. These results suggest that environmentally relevant MeHg exposures do not drastically reduce the reproductively important endpoints in these fish, but to capture realistic exposure scenarios, whole life-cycle yellow perch exposures are needed.


Subject(s)
Diet , Environmental Exposure , Methylmercury Compounds/pharmacology , Perches/physiology , Reproduction/drug effects , Zebrafish/physiology , Animals , Diet/adverse effects , Environmental Exposure/adverse effects , Female , Lakes , Liver/drug effects , Ovary/drug effects , Real-Time Polymerase Chain Reaction
15.
Prev Vet Med ; 145: 110-120, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28903867

ABSTRACT

Bacterial kidney disease (BKD), caused by Renibacterium salmoninarum, threatens salmonid populations throughout the Northern hemisphere. Many fishery regulatory authorities require ongoing disease monitoring in hatcheries and spawning runs prior to gamete collection to prevent BKD outbreaks and spread. According to diagnostic protocols of the American Fisheries Society-Fish Health Section, monitoring for R. salmoninarum generally consists of lethal sampling of visceral organs from fish. However, non-lethal sampling would be preferable, especially for valuable broodstock or endangered species. In this study, non-lethal sampling methods were evaluated for their ability to detect R. salmoninarum in Chinook salmon (Oncorhynchus tshawytscha) that were experimentally infected via two different routes (e.g., intraperitoneal injection and waterborne immersion) to mimic acute and chronic disease courses. Non-lethal (e.g., blood, mucus, and a urine/feces mixture) and lethal (e.g., kidney and spleen homogenate) samples were collected from challenged and mock-challenged Chinook salmon and the presence of R. salmoninarum was assessed by culture on modified kidney disease medium, nested polymerase chain reaction (nPCR), and semi-quantitative enzyme-linked immunosorbent assay (ELISA). Sensitivity, specificity, and accuracy of lethal and non-lethal samples in detecting R. salmoninarum were calculated using receiver operating characteristic (ROC) analyses. For ROC analyses, true disease status was evaluated under two different assumptions: 1) that lethal samples represented the true disease status and 2) that all experimentally challenged fish were truly infected. We found that sensitivity and specificity of non-lethal samples depended upon time of sampling after experimental infection, sample type, and R. salmoninarum exposure route. Uro-fecal samples had the greatest potential as non-lethal samples compared to mucus and blood. In terms of future monitoring, combining lethal samples tested by ELISA assay with uro-fecal samples tested by nPCR could be the best strategy for detecting R. salmoninarum prevalence in a population as it reduces the overall number of fish required for sampling.


Subject(s)
Fish Diseases/diagnosis , Gram-Positive Bacterial Infections/veterinary , Micrococcaceae/isolation & purification , Salmon , Animals , Enzyme-Linked Immunosorbent Assay/methods , Enzyme-Linked Immunosorbent Assay/veterinary , Fish Diseases/microbiology , Gram-Positive Bacterial Infections/diagnosis , Gram-Positive Bacterial Infections/microbiology , ROC Curve
16.
ACS Omega ; 2(8): 4870-4877, 2017 Aug 31.
Article in English | MEDLINE | ID: mdl-28884165

ABSTRACT

Methylmercury (MeHg) is a pervasive and ubiquitous environmental neurotoxicant within aquatic ecosystems, known to alter behavior in fish and other vertebrates. This study sought to assess the behavioral effects of developmental MeHg exposure on larval yellow perch (Perca flavescens)-a nonmodel fish species native to the Great Lakes. Embryos were exposed to MeHg (0, 30, 100, 300, and 1000 nM) for 20 h and then reared to 25 days post fertilization (dpf) for analyses of spontaneous swimming, visual motor response (VMR), and foraging efficiency. MeHg exposures rendered total mercury (THg) body burdens of 0.02, 0.21, 0.95, 3.14, and 14.93 µg/g (wet weight). Organisms exposed to 1000 nM exhibited high mortality; thus, they were excluded from downstream behavioral analyses. All MeHg exposures tested were associated with a reduction in spontaneous swimming at 17 and 25 dpf. Exposure to 30 and 100 nM MeHg caused altered locomotor output during the VMR assay at 21 dpf, whereas exposure to 100 nM MeHg was associated with decreased foraging efficiency at 25 dpf. For the sake of comparison, the second-lowest exposure tested here rendered a THg burden that represents the permissible level of consumable fish in the United States. Moreover, this dose is reported in roughly two-thirds of consumable fish species monitored in the United States, according to the Food and Drug Administration. Although the THg body burdens reported here were higher than expected in the environment, our study is the first to analyze the effects of MeHg exposure on fundamental survival behaviors of yellow perch larvae and advances in the exploration of the ecological relevance of behavioral end points.

17.
Proc Natl Acad Sci U S A ; 114(5): 1135-1140, 2017 01 31.
Article in English | MEDLINE | ID: mdl-28096418

ABSTRACT

Carbapenem-resistant Enterobacteriaceae (CRE) are among the most severe threats to the antibiotic era. Multiple different species can exhibit resistance due to many different mechanisms, and many different mobile elements are capable of transferring resistance between lineages. We prospectively sampled CRE from hospitalized patients from three Boston-area hospitals, together with a collection of CRE from a single California hospital, to define the frequency and characteristics of outbreaks and determine whether there is evidence for transfer of strains within and between hospitals and the frequency with which resistance is transferred between lineages or species. We found eight species exhibiting resistance, with the majority of our sample being the sequence type 258 (ST258) lineage of Klebsiella pneumoniae There was very little evidence of extensive hospital outbreaks, but a great deal of variation in resistance mechanisms and the genomic backgrounds carrying these mechanisms. Local transmission was evident in clear phylogeographic structure between the samples from the two coasts. The most common resistance mechanisms were KPC (K. pneumoniae carbapenemases) beta-lactamases encoded by blaKPC2, blaKPC3, and blaKPC4, which were transferred between strains and species by seven distinct subgroups of the Tn4401 element. We also found evidence for previously unrecognized resistance mechanisms that produced resistance when transformed into a susceptible genomic background. The extensive variation, together with evidence of transmission beyond limited clonal outbreaks, points to multiple unsampled transmission chains throughout the continuum of care, including asymptomatic carriage and transmission of CRE. This finding suggests that to control this threat, we need an aggressive approach to surveillance and isolation.


Subject(s)
Carbapenems/pharmacology , DNA Transposable Elements/genetics , Disease Outbreaks , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae/drug effects , R Factors/genetics , beta-Lactam Resistance/genetics , Bacterial Proteins/genetics , Boston/epidemiology , Clone Cells , Cross Infection/epidemiology , Cross Infection/microbiology , Cross Infection/transmission , Enterobacteriaceae/enzymology , Enterobacteriaceae/genetics , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/transmission , Genetic Variation , Genome, Bacterial , Humans , Prospective Studies , Sequence Alignment , Transformation, Bacterial , beta-Lactam Resistance/physiology , beta-Lactamases/genetics
18.
BMC Genomics ; 17: 675, 2016 08 24.
Article in English | MEDLINE | ID: mdl-27558222

ABSTRACT

BACKGROUND: The sea lamprey (Petromyzon marinus) is a jawless vertebrate that parasitizes fish as an adult and, with overfishing, was responsible for the decline in lake trout (Salvelinus namaycush) populations in the Great Lakes. While laboratory studies have looked at the rates of wounding on various fish hosts, there have been few investigations on the physiological effects of lamprey wounding on the host. In the current study, two morphotypes of lake trout, leans and siscowets, were parasitized in the laboratory by sea lampreys and the liver transcriptomes of parasitized and nonparasitized fish were analyzed by RNA-seq (DESeq2 and edgeR) to determine which genes and gene pathways (Ingenuity Pathway Analysis) were altered by lamprey parasitism. RESULTS: Overall, genes encoding molecules involved in catalytic (e.g., enzymatic) and binding activities (factors and regulators) predominated the regulated gene lists. In siscowets, the top upregulated gene was growth arrest and DNA-damage-inducible protein and for leans it was interleukin-18-binding protein. In leans, the most significantly downregulated gene was UDP-glucuronosyltransferase 2A2 - DESeq2 or phosphotriesterase related - edgeR. For siscowets, the top downregulated gene was C-C motif chemokine 19 - DESeq2 or GTP-binding protein Rhes - edgeR. Gene pathways associated with inflammatory-related responses or factors (cytokines, chemokines, oxidative stress, apoptosis) were regulated following parasitism in both morphotypes. However, pathways related to energy metabolism (glycolysis, gluconeogenesis, lipolysis, lipogenesis) were also regulated. These pathways or the intensity or direction (up/downregulation) of regulation were different between leans and siscowets. Finally, one of the most significantly downregulated pathways in both leans and siscowets was the kynurenine (tryptophan degradation) pathway. CONCLUSIONS: The results indicate a strong transcriptional response in the lake trout to lamprey parasitism that entails genes involved in the regulation of inflammation and cellular damage. Responses to energy utilization as well as hydromineral balance also occurred indicating an adjustment in the host to energy demands and osmotic imbalances during parasitism. Given the role of the kynurenine pathway in promoting immunotolerance in mammals, the downregulation observed in this pathway during parasitism may signify an attempt by the host to inhibit any feedback suppression of the immune response to the lamprey.


Subject(s)
Fish Proteins/genetics , Gene Expression Profiling/methods , Petromyzon/physiology , Sequence Analysis, RNA/methods , Trout/parasitology , Animals , Energy Metabolism , Gene Expression Regulation , Gene Regulatory Networks , Kynurenine/metabolism , Lakes , Trout/genetics
19.
Ecotoxicology ; 25(6): 1136-49, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27154845

ABSTRACT

A 4.1 million m(3) coal ash release into the Emory and Clinch rivers in December 2008 at the Tennessee Valley Authority's Kingston Fossil Plant in east Tennessee, USA, prompted a long-term, large-scale biological monitoring effort to determine if there are chronic effects of this spill on resident biota. Because of the magnitude of the ash spill and the potential for exposure to coal ash-associated contaminants [e.g., selenium (Se), arsenic (As), and mercury (Hg)] which are bioaccumulative and may present human and ecological risks, an integrative, bioindicator approach was used. Three species of fish were monitored-bluegill (Lepomis macrochirus), redear sunfish (L. microlophus), and largemouth bass (Micropterus salmoides)-at ash-affected and reference sites annually for 5 years following the spill. On the same individual fish, contaminant burdens were measured in various tissues, blood chemistry parameters as metrics of fish health, and various condition and reproduction indices. A multivariate statistical approach was then used to evaluate relationships between contaminant bioaccumulation and fish metrics to assess the chronic, sub-lethal effects of exposure to the complex mixture of coal ash-associated contaminants at and around the ash spill site. This study suggests that while fish tissue concentrations of some ash-associated contaminants are elevated at the spill site, there was no consistent evidence of compromised fish health linked with the spill. Further, although relationships between elevated fillet burdens of ash-associated contaminants and some fish metrics were found, these relationships were not indicative of exposure to coal ash or spill sites. The present study adds to the weight of evidence from prior studies suggesting that fish populations have not incurred significant biological effects from spilled ash at this site: findings that are relevant to the current national discussions on the safe disposal of coal ash waste.


Subject(s)
Chemical Hazard Release , Coal Ash , Environmental Monitoring , Reproduction/physiology , Water Pollutants, Chemical/toxicity , Animals , Arsenic , Fishes , Mercury , Perciformes , Rivers/chemistry , Selenium , Tennessee , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...