Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
Add more filters










Publication year range
1.
Molecules ; 29(2)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38257305

ABSTRACT

Chromium complexes containing a bis(diphenylphosphino) ligand have attracted significant interest over many years due to their potential as active catalysts for ethylene oligomerisation when combined with suitable co-catalysts such as triethylaluminium (TEA) or methylaluminoxane (MAO). While there has been considerable attention devoted to the possible reaction intermediates and the nature of the Cr oxidation states involved, the potential UV photoactivity of the Cr(I) complexes has so far been overlooked. Therefore, to explore the photoinduced transformations of bis(diphenylphosphino) stabilized Cr(I) complexes, we used continuous-wave (CW) EPR to study the effects of UV radiation on a cationic [Cr(CO)4(dppp)]+[Al(OC(CF3)3)4]- complex (1), where dppp represents the 1,3 bis-(diphenylphosphino)propane ligand, Ph2P(C3H6)PPh2. Our preliminary investigations into the photochemistry of this complex revealed that [Cr(CO)4(dppp)]+ (1) can be readily photo-converted into an intermediate mer-[Cr(CO)3(κ1-dppp)(κ2-dppp)]+ complex (2) and eventually into a trans-[Cr(CO)2(dppp)2]+ complex (3) in solution at room temperature under UV-A light. Here, we show that the intermediate species (2) involved in this transformation can be identified by EPR at much lower temperature (140 K) and at a specific wavelength (highlighting the wavelength dependency of the reaction). In addition, small amounts of a 'piano-stool'-type complex, namely [Cr(CO)2(dppp-η6-arene)]+ (4), can also be formed during the photoconversion of [Cr(CO)4(dppp)]+ using UV-A light. There was no evidence for the formation of the [Cr(L-bis-η6-arene)]+ complex (5) in these UV irradiation experiments. For the first time, we also evidence the formation of a 1-hexene coordinated [Cr(CO)3(dppp)(1-hexene)]+ complex (6) following UV irradiation of [Cr(CO)4(dppp)]+ in the presence of 1-hexene; this result demonstrates the unprecedented opportunity for exploiting light activation during Cr-driven olefin oligomerisation catalysis, instead of expensive, difficult-to-handle, and hazardous chemical activators.

2.
RSC Adv ; 14(6): 4244-4251, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38292261

ABSTRACT

The flexibility of the MIL-53(M) metal-organic framework (MOF) has been elucidated through various characterization methodologies, particularly in gas and liquid adsorption processes. However, to the best of our knowledge, there has been no prior electron paramagnetic resonance (EPR) characterization of liquid-phase adsorption in the MOF MIL-53(M), which offers insights into local geometric changes at the oxygen octahedron containing the metal ions of the framework. In this study, we investigate, for the first time, the pore transformations within the MIL-53(Al0.99Cr0.01) framework during liquid-phase adsorption using EPR spectroscopy. Our investigation concentrates explicitly on the adsorption of pure solvents, including water, methanol, ethanol, isopropanol, pyridine, and mixed water/methanol phases. The EPR spectroscopy on the (Al0.99Cr0.01) MOF has allowed us to witness and comprehend the transitions between the narrow pore and large pore phases by examining changes in the zero-field splitting parameters of the S = 3/2 Cr(iii) species. Of all the solvents examined, a robust and distinct spectral feature observed during methanol adsorption unequivocally indicates the pore opening.

3.
Phys Chem Chem Phys ; 25(23): 15702-15714, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37259848

ABSTRACT

The nature of the chemical bonding between NO and open-shell NiII ions docked in a metal-organic framework is fully characterized by EPR spectroscopy and computational methods. High-frequency EPR experiments reveal the presence of unsaturated NiII ions displaying five-fold coordination. Upon NO adsorption, in conjunction with advanced EPR methodologies and DFT/CASSCF modelling, the covalency of the metal-NO and metal-framework bonds is directly quantified. This enables unravelling the complex electronic structure of NiII-NO species and retrieving their microscopic structure.

4.
Inorg Chem ; 61(3): 1308-1315, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35005902

ABSTRACT

We report a new series of homoleptic Ni(I) bis-N-heterocyclic carbene complexes with a range of torsion angles between the two ligands from 68° to 90°. Electron paramagnetic resonance measurements revealed a strongly anisotropic g-tensor in all complexes with a small variation in g∥ ∼ 5.7-5.9 and g⊥ ∼ 0.6. The energy of the first excited state identified by variable-field far-infrared magnetic spectroscopy and SOC-CASSCF/NEVPT2 calculations is in the range 270-650 cm-1. Magnetic relaxation measured by alternating current susceptibility up to 10 K is dominated by Raman and direct processes. Ab initio ligand-field analysis reveals that a torsion angle of <90° causes the splitting between doubly occupied dxz and dyz orbitals, which has little effect on the magnetic properties, while the temperature dependence of the magnetic relaxation appears to have no correlation with the torsion angle.

5.
J Sport Rehabil ; 30(5): 707-716, 2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33418539

ABSTRACT

PURPOSE: Anterior cruciate ligament (ACL) injuries are among the most severe injuries in the Gaelic Athletic Association. Hop tests measure functional performance after ACL reconstruction as they replicate the key requirements for a match situation. However, research examining functional recovery of ACL-reconstructed Gaelic athletes is lacking. The objective of this study is to determine if athletes restore normal hop symmetry after ACL reconstruction and to examine if bilateral deficiencies persist in hop performance following return to sport. METHODS: A cross-sectional design was used to evaluate hop performance of 30 ACL-reconstructed Gaelic athletes who had returned to competition and 30 uninjured controls in a battery of hop tests including a single, 6-m, triple, and triple-crossover hop test. RESULTS: In each test, the mean symmetry score of the ACL reconstruction group was above the cutoff for normal performance of 90% adopted by this study (98%, 99%, 97%, and 99% for the single, 6-m, triple, and triple-crossover hop, respectively). No significant differences in absolute hop scores emerged between involved and control limbs, with the exception of the single-hop test where healthy dominant limbs hopped significantly further than ACL-reconstructed dominant limbs (P = .02). No significant deficits were identified on the noninvolved side. CONCLUSIONS: The majority of ACL-reconstructed Gaelic athletes demonstrate normal levels of hop symmetry after returning to competition. Suboptimal hop performance can persist on the involved side compared with control limbs. Targeted rehabilitation may be warranted after returning to competition to restore performance to levels of healthy uninjured athletes.


Subject(s)
Anterior Cruciate Ligament Reconstruction , Exercise Test , Physical Functional Performance , Recovery of Function , Return to Sport , Adult , Humans , Male , Young Adult , Anterior Cruciate Ligament Reconstruction/methods , Athletes , Athletic Performance , Case-Control Studies , Cross-Sectional Studies , Exercise Test/methods , Exercise Test/statistics & numerical data , Team Sports
6.
Angew Chem Int Ed Engl ; 59(10): 4106-4114, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-31889372

ABSTRACT

Herein we report an efficient synthesis to prepare O-doped nanographenes derived from the π-extension of pyrene. The derivatives are highly fluorescent and feature low oxidation potentials. Using electrooxidation, crystals of cationic mixed-valence (MV) complexes were grown in which the organic salts organize into face-to-face π-stacks, a favorable solid-state arrangement for organic electronics. Variable-temperature electron paramagnetic resonance (EPR) measurements and relaxation studies suggest a strong electron delocalization along the longitudinal axis of the columnar π-stacking architectures. Electric measurements of single crystals of the MV salts show a semiconducting behavior with a remarkably high conductivity at room temperature. These findings support the notion that π-extension of heteroatom-doped polycyclic aromatic hydrocarbons is an attractive approach to fabricate nanographenes with a broad spectrum of semiconducting properties and high charge mobilities.

7.
J Magn Reson ; 310: 106644, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31812887

ABSTRACT

A unique dual mode X-band Continuous Wave (CW) EPR resonator designed for simultaneous EPR measurement and rapid microwave (MW) induced sample heating is described. Chemical reactions subjected to a flow of energy and matter can be perturbed away from the thermodynamic equilibrium by imposing a rapid shock or physical change to the system. Depending on the magnitude of the perturbation, these changes can dictate the subsequent evolution of the entire system, allowing for instance to populate non-equilibrium reactive intermediate states. Temperature jump (T-jump) experiments are a common method to achieve such perturbations. Most T-jump experiments are based on Joule Heating methods or IR lasers. Here we demonstrate the principle of rapid sample heating based on microwaves. The benefits of MW heating include (i) rapid and efficient heating (i.e. using a tuned resonant cavity, >99% efficient power transfer to the sample can be achieved), and (ii) volumetric heating (i.e. the entire sample volume rises in temperature at once, since heat is generated in the sample instead of being transferred to it). Accordingly, the key concept of the design is the use of a cavity resonator allowing EPR detection (at 9.5 GHz) and simultaneous sample heating (at 6.1 GHz). Temperature increments of 50 °C within a few seconds are possible. This is evidenced and illustrated here by probing the temperature-induced variation of the rotational dynamics of 16-doxyl stearic acid methyl ester (16-DSE) spin probe grafted on the surface of sodium dodecyl sulphate (SDS) micelles in water, as well as copper (II) acetylacetonate in chloroform. Rapid changes in the rotational dynamics of the paramagnetic centres provide direct evidence for the in situ and simultaneous EPR measurement-heating capabilities of the resonator. Improvements afforded by the use of pulsed MW sources will enable faster heating time scales to be achieved. In the longer term, this current study demonstrates the simple and direct possibilities for using MW heating as a means of performing T-jump experiments.

8.
Dalton Trans ; 48(5): 1850-1858, 2019 Feb 07.
Article in English | MEDLINE | ID: mdl-30652174

ABSTRACT

A series of diaryl, mono-aryl/alkyl and dialkyl mono- and bicyclic expanded-ring N-heterocyclic carbenes (ER-NHCs) have been prepared and their complexation to Au(i) investigated through the structural analysis of fifteen Au(NHC)X and/or [Au(NHC)2]X complexes. The substituted diaryl 7-NHCs are the most sterically encumbered with large buried volume (%VB) values of 40-50% with the less flexible six-membered analogues having %VB values at least 5% smaller. Although the bicyclic systems containing fused 6- and 7-membered rings (6,7-NHCs) are constrained with relatively acute NCN bond angles, they have the largest %VB values of the dialkyl derivatives reported here, a feature related to the fixed conformation of the heterocyclic rings and the compressional effect of a pre-set methyl substituent.

9.
Organometallics ; 38(12): 2523-2529, 2019 Jun 24.
Article in English | MEDLINE | ID: mdl-32055085

ABSTRACT

UV-induced photochemical transformations of the paramagnetic [Cr(CO)4(Ph2PCH2CH2CH2PPh2)]+ complex (abbreviated [Cr(CO)4(dppp)]+) in dichloromethane was investigated by CW EPR spectroscopy. Room-temperature UV irradiation results in the rapid transformation of [Cr(CO)4(dppp)]+ into trans-[Cr(CO)2(dppp)2]+. However, low-temperature (77-120 K) UV irradiation reveals the presence of an intermediate mer-[Cr(CO)3(κ1-dppp)(κ2-dppp)]+ complex which photochemically transforms into trans-[Cr(CO)2(dppp)2]+. The derived spin Hamiltonian parameters for these complexes were confirmed by DFT calculations. The photoinduced reaction is shown to be concentration-dependent, leading to a distribution of the three complexes ([Cr(CO)4(dppp)]+, mer-[Cr(CO)3(κ1-dppp)(κ 2-dppp)]+, and trans-[Cr(CO)2(dppp)2]+). A bimolecular photoinduced mechanism is proposed to account for the formation of mer-[Cr(CO)3(κ1-dppp)(κ2-dppp)]+ and trans-[Cr(CO)2(dppp)2]+.

10.
Chem Sci ; 9(35): 7053-7057, 2018 Sep 21.
Article in English | MEDLINE | ID: mdl-30310625

ABSTRACT

During the transition from prebiotic chemistry to biology, a period of solution-phase, non-enzymatic activation of (oligo)nucleotides must have occurred, and accordingly, a mechanism for phosphate activation must have existed. Herein, we detail results of an investigation into prebiotic phosphate activation chemistry using simple, prebiotically available nitriles whose reactivity is increased by Cu2+ ions. Furthermore, although Cu2+ ions are known to catalyse the hydrolysis of phosphodiester bonds, we found this deleterious activity to be almost completely suppressed by inclusion of amino acids or dipeptides, which may suggest a productive relationship between protein and RNA from the outset.

11.
Inorg Chem ; 57(17): 10857-10866, 2018 Sep 04.
Article in English | MEDLINE | ID: mdl-30113817

ABSTRACT

Chelating exchange resins (CERs) are now widely used for metal extraction in aqueous acidic media. Many of these CERs contain surface N-donor ligands, such as di(2-picolylamine) (BPA) and picolylamine (PA), which are highly selective for Cu(II) uptake. Two such widely used resins are Dowex M4195 and CuWRAM. Surprisingly, very little is known about the Cu(II) binding environments on the exchange resins, particularly at variable concentrations and pH's, and therefore we used EPR spectroscopy to investigate this binding. The broad EPR spectra of the Cu(II) loaded resins are quite complex, indicating the presence of multiple Cu(II) binding environments. By preparing a series of well-defined [CuII(PA) x] and [CuII(BPA) x] complexes and studying their EPR and UV-vis spectra, the individual Cu(II) species contributing to the broad and overlapping EPR spectra of the loaded resins were identified. For Dowex M4195, [CuII(BPA)](H2O) m and [CuII(BPA)2] complexes are most dominant, whereas for CuWRAM two dominant species including [CuII(PA)2](H2O) m and [CuII(PA)3] were identified. Notably, [CuII(PA)](H2O) m was not present in this sample. The experimental spin Hamiltonian parameters for all these species were in good agreement with the density functional theory derived values. Additional intermolecular Cu(II) species were identified on both resins, labeled [CuII(BPA) x(BPA) y(H2O) n] and [CuII(PA) x(PA) y(H2O) n]. The presence of coordinated water in these intermolecular anchored sites was confirmed in a series of dehydration-rehydration experiments. Furthermore, a series of acid elution experiments also confirmed that these species are less strongly coordinated to the resins compared to the intramolecular species [CuII(BPA)](H2O) m, [CuII(BPA)2], [CuII(PA)2](H2O) m, and [CuII(PA)3]. Finally, while equilibrium batch uptake measurements revealed that the CuWRAM material had a much lower Cu(II) capacity compared to the polymeric Dowex material, the adsorbed copper can be recovered more efficiently using acid elution.

12.
Chemistry ; 24(17): 4382-4389, 2018 Mar 20.
Article in English | MEDLINE | ID: mdl-29232478

ABSTRACT

Here we describe the synthesis of electron-rich PXX derivatives in which the energy levels of the excited states have been rigidly shifted through the insertion of imide groups. This has allowed the development of a new series of oxygen-doped photoredox-active chromophores with improved oxidizing and reducing properties. Capitalizing on the dehalogenation of organic halides as a model reaction, we could investigate the photooxidative and photoreductive potential of these molecules in model chemical transformations. Depending on the substrate, solvent and dye the reaction mechanism can follow different paths. This prompted us to consider the first chemoselective transformation protocol, in which two different C-Br bonds could be chemoselectively reacted through the sequential photoactivation of two different colorants.

13.
Dalton Trans ; 47(3): 769-782, 2018 Jan 15.
Article in English | MEDLINE | ID: mdl-29243762

ABSTRACT

Bromide abstraction from the three-coordinate Ni(i) ring-expanded N-heterocyclic carbene complex [Ni(6-Mes)(PPh3)Br] (1; 6-Mes = 1,3-bis(2,4,6-trimethylphenyl)-3,4,5,6-tetrahydropyrimidin-2-ylidene) with TlPF6 in THF yields the T-shaped cationic solvent complex, [Ni(6-Mes)(PPh3)(THF)][PF6] (2), whereas treatment with NaBArF4 in Et2O affords the dimeric Ni(i) product, [{Ni(6-Mes)(PPh3)}2(µ-Br)][BArF4] (3). Both 2 and 3 act as latent sources of the cation [Ni(6-Mes)(PPh3)]+, which can be trapped by CO to give [Ni(6-Mes)(PPh3)(CO)]+ (5). Addition of [(Et3Si)2(µ-H)][B(C6F5)4] to 1 followed by work up in toluene results in the elimination of phosphine as well as halide to afford a co-crystallised mixture of [Ni(6-Mes)(η2-C6H5Me)][B(C6F5)4] (4), and [6MesHC6H5Me][B(C6F5)4]. Treatment of 1 with sodium salts of more strongly coordinating anions leads to substitution products. Thus, NaBH4 yields the neutral, diamagnetic dimer [{Ni(6-Mes)}2(BH4)2] (6), whereas NaBH3(CN) gives the paramagnetic monomeric cyanotrihydroborate complex [Ni(6-Mes)(PPh3)(NCBH3)] (7). Treatment of 1 with NaOtBu/NHPh2 affords the three-coordinate Ni(i) amido species, [Ni(6-Mes)(PPh3)(NPh2)] (8). The electronic structures of 2, 5, 7 and 8 have been analysed in comparison to that of previously reported 1 using a combination of EPR spectroscopy and density functional theory.

14.
Inorg Chem ; 56(19): 11862-11875, 2017 Oct 02.
Article in English | MEDLINE | ID: mdl-28933856

ABSTRACT

The interaction of imidazole with a [Cu(acac)2] complex was studied using electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR), hyperfine sublevel correlation spectroscopy (HYSCORE), and density functional theory (DFT). At low Im ratios (Cu:Im 1:10), a 5-coordinate [Cu(acac)2Imn=1] monoadduct is formed in frozen solution with the spin Hamiltonian parameters g1 = 2.063, g2 = 2.063, g3 = 2.307, A1 = 26, A2 = 15, and A3 = 472 MHz with Im coordinating along the axial direction. At higher Im concentrations (Cu:Im 1:50), a 6-coordinate [Cu(acac)2Imn=2] bis-adduct is formed with the spin Hamiltonian parameters g1 = 2.059, g2 = 2.059, g3 = 2.288, A1 = 30, A2 = 30, and A3 = 498 MHz with a poorly resolved 14N superhyperfine pattern. The isotropic EPR spectra revealed a distribution of species ([Cu(acac)2], [Cu(acac)2Imn=1], and [Cu(acac)2Imn=2]) at Cu:Im ratios of 1:0, 1:10, and 1:50. The superhyperfine pattern originates from two strongly coordinating N3 imino nitrogens of the Im ring. Angular selective 14N ENDOR analysis revealed the NA tensor of [34.8, 43.5, 34.0] MHz, with e2qQ/h = 2.2 MHz and η = 0.2 for N3. The hyperfine and quadrupole values for the remote N1 amine nitrogens (from HYSCORE) were found to be [1.5, 1.4, 2.5] MHz with e2qQ/h = 1.4 MHz and η = 0.9. 1H ENDOR also revealed three sets of HA tensors corresponding to the nearly equivalent H2/H4 protons in addition to the H5 and H1 protons of the Im ring. The spin Hamiltonian parameters for the geometry optimized structures of [Cu(acac)2Imn=2], including cis-mixed plane, trans-axial, and trans-equatorial, were calculated. The best agreement between theory and experiment indicated the preferred coordination is trans-equatorial [Cu(acac)2Imn=2]. A number of other Im derivatives were also investigated. 4(5)-methyl-imidazole forms a [Cu(acac)2(Im-3)n=2] trans-equatorial adduct, whereas the bulkier 2-methyl-imidazole (Im-2) and benzimidazole (Im-4) form the [Cu(acac)2(Im-2,4)n=1] monoadduct only. Our data therefore show that subtle changes in the substrate structure lead to controllable changes in coordination behavior, which could in turn lead to rational design of complexes for use in catalysis, imaging, and medicine.

15.
Chemistry ; 23(49): 11834-11842, 2017 Sep 04.
Article in English | MEDLINE | ID: mdl-28295756

ABSTRACT

The liquid-phase oxidation of cyclohexane to cyclohexanol and cyclohexanone was investigated by synthesizing and testing an array of heterogeneous catalysts comprising: monometallic Ag/MgO, monometallic Pd/MgO and a set of bimetallic AgPd/MgO catalysts. Interestingly, Ag/MgO was capable of a conversion comparable to current industrial routes of approximately 5 %, and with a high selectivity (up to 60 %) to cyclohexanol, thus making Ag/MgO an attractive system for the synthesis of intermediates for the manufacture of nylon fibres. Furthermore, following the doping of Ag nanoparticles with Pd, the conversion increased up to 10 % whilst simultaneously preserving a high selectivity to the alcohol. Scanning transmission electron microscopy and energy dispersive spectroscopy of the catalysts showed a systematic particle-size-composition variation with the smaller Ag-Pd nanoparticles being statistically richer in Pd. Analysis of the reaction mixture by electron paramagnetic resonance (EPR) spectroscopy coupled with the spin-trapping technique showed the presence of large amounts of alkoxy radicals, thus providing insights for a possible reaction mechanism.

16.
Inorg Chem ; 55(21): 11006-11017, 2016 Nov 07.
Article in English | MEDLINE | ID: mdl-27731984

ABSTRACT

Potassium graphite reduction of the half-sandwich Ni(II) ring-expanded diamino/diamidocarbene complexes CpNi(RE-NHC)Br gave the Ni(I) derivatives CpNi(RE-NHC) (where RE-NHC = 6-Mes (1), 7-Mes (2), 6-MesDAC (3)) in yields of 40%-50%. The electronic structures of paramagnetic 1-3 were investigated by CW X-/Q-band electron paramagnetic resonance (EPR) and Q-band 1H electron nuclear double resonance (ENDOR) spectroscopy. While small variations in the g-values were observed between the diaminocarbene complexes 1 and 2, pronounced changes in the g-values were detected between the almost isostructural species (1) and diamidocarbene species (3). These results highlight the sensitivity of the EPR g-tensor to changes in the electronic structure of the Ni(I) centers generated by incorporation of heteroatom substituents onto the backbone ring positions. Variable-temperature EPR analysis also revealed the presence of a second Ni(I) site in 3. The experimental g-values for these two Ni(I) sites detected by EPR in frozen solutions of 3 are consistent with resolution on the EPR time scale of the disordered components evident in the X-ray crystallographically determined structure and the corresponding density functional theory (DFT)-calculated g-tensor. Q-band 1H ENDOR measurements revealed a small amount of unpaired electron spin density on the Cp rings, consistent with the calculated SOMO of complexes 1-3. The magnitude of the 1H A values for 3 were also notably larger, compared to 1 and 2, again highlighting the influence of the diamidocarbene on the electronic properties of 3.

17.
Inorg Chem ; 54(17): 8465-73, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26288384

ABSTRACT

Copper complexes of the phenolic oxime family of ligands (3-X-salicylaldoximes) are used extensively as metal solvent extractants. Incorporation of electronegative substituents in the 3-position, ortho to the phenol group, can be used to buttress the interligand H-bonding, leading to an enhancement in extractant strength. However, investigation of the relevant H-bonding in these complexes can be exceedingly difficult. Here, we have combined EPR, ENDOR, DFT, and X-ray crystallography to study this effect. Analysis of the (1)H ENDOR data revealed a variation in the Cu···H(16) (oxime proton) distance from 2.92 Å for the unsubstituted complex [Cu(L(2))2] to 3.65 Å for the X = CH2N(C6H13)2 substituted complex [Cu(L(3))2]. DFT calculations showed that this variation is caused by changes to the length and strength of the H-bond between the oximic hydrogen and the phenolate oxygen. Noticeable changes to the Cu···H(15) (azomethine proton) distances and the Cu···N bonding parameters were also observed in the two complexes, as revealed through the (N)A and (N)Q ENDOR data. Distortions in the structure of the complex and variations in the oximic proton to phenolate oxygen H-bond strength caused by the substituent (X) were confirmed by DFT and X-ray crystallography. DFT directly evidenced the importance of the interaction between H(16) and the amine nitrogen of CH2N(C6H13)2 in the buttressed complex and indicated that the high strength of this interaction may not necessarily lead to an enhancement of copper extraction, as it can impose an unfavorable geometry in the inner coordination sphere of the complex. Therefore, ENDOR, DFT, and X-ray structural data all indicate that the aminomethyl substituent (X) ortho to the phenolic oxygen atom provides a particularly strong buttressing of interligand H-bonding in these copper complexes and that these outer sphere interactions can significantly influence structure and stability.

18.
Phys Chem Chem Phys ; 17(17): 11445-54, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25854519

ABSTRACT

The adducts of bis(acetylacetonato)­copper(II), [Cu(acac)2], formed with a range of nitrogen heterocycles including pyridine (2), methylpyridines (3,4,5), amino-methylpyridines (6,7) and diazines (8,9,10) were investigated in frozen solution using X-band EPR and 1H ENDOR spectroscopy. The small perturbations to the EPR spin Hamiltonian parameters (g and CuA) were consistent with the axial coordination of the nitrogen bases to Cu(II), and found to be dependent on both the basicity and steric influence of the coordinating substrate. The detailed structure of two adducts was then investigated by angular selective (1)H ENDOR and DFT. For the [Cu(acac)2](pyridine) adduct, axial coordination of the substrate was found to occur via the pyridine nitrogen as expected, producing a characteristic (1)H hyperfine coupling ((H)Ai = −2.6, −2.04, 4.7 MHz; ß = 36°; aiso = 0.2 MHz) arising from the ortho-(1)H in the ring 2 or 6 position. These results were confirmed by DFT. However, in the [Cu(acac)2](2-amino-6-methyl-pyridine) adduct, the ENDOR data revealed a substantially different (1)H hyperfine coupling ((H)Ai = −4.52, −3.35, 6.47 MHz; ß = 14°; aiso = −0.47 MHz) arising from the ­NH2 amino protons. Analysis of this experimentally derived tensor in conjunction with the calculated DFT tensors, revealed that the 2-amino-6-methyl-pyridine substrate binds to Cu(II) via the exocyclic amino pyridine nitrogen, but with a tilt angle of 20° of the pyridine ring away from the geometry optimised structure. These results reveal how important structural information on the coordination geometry of Cu(II) adducts can be obtained by (1)H ENDOR, but only when the complete angular dependency profile of the ENDOR data is thoroughly considered.

19.
Chemistry ; 20(26): 7935-8, 2014 Jun 23.
Article in English | MEDLINE | ID: mdl-24715587

ABSTRACT

While attractive, the iron-catalyzed coupling of arylboron reagents with alkyl halides typically requires expensive or synthetically challenging diphosphine ligands. Herein, we show that primary and secondary alkyl bromides and chlorides, as well as benzyl and allyl halides, can be coupled with arylboronic esters, activated with alkyllithium reagents, by using very simple iron-based catalysts. The catalysts used were either adducts of inexpensive and widely available diphosphines or, in a large number of cases, simply [Fe(acac)3] with no added co-ligands. In the former case, preliminary mechanistic studies highlight the likely involvement of iron(I)-phosphine intermediates.

20.
J Am Chem Soc ; 136(14): 5283-6, 2014 Apr 09.
Article in English | MEDLINE | ID: mdl-24660853

ABSTRACT

This study details the synthesis and characterization of an unprecedented two-coordinate, high-spin manganese(0) complex that incorporates an unsupported Mn-Mg bond, viz. L(†)MnMg((Mes)Nacnac) (L(†) = -N(Ar(†))(SiPr(i)3), Ar(†) = C6H2{C(H)Ph2}2Pr(i)-2,6,4; (Mes)Nacnac = [(MesNCMe)2CH](-); Mes = mesityl). This compound has been utilized as an "inorganic Grignard reagent" in the preparation of the first two-coordinate manganese(I) dimer, L(†)MnMnL* (L* = -N(Ar*)(SiMe3), Ar* = C6H2{C(H)Ph2}2Me-2,6,4), and the related mixed valence, bis(amido)-hetereobimetallic complex, Mn(II)(µ-L(†))(µ-L*)Cr(0). It is also shown to act as a two-electron reducing agent in reactions with unsaturated substrates.

SELECTION OF CITATIONS
SEARCH DETAIL
...