Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Neurol ; 79(6): 1031-1037, 2016 06.
Article in English | MEDLINE | ID: mdl-27159321

ABSTRACT

Here we report whole exome sequencing (WES) on a cohort of 71 patients with persistently unresolved white matter abnormalities with a suspected diagnosis of leukodystrophy or genetic leukoencephalopathy. WES analyses were performed on trio, or greater, family groups. Diagnostic pathogenic variants were identified in 35% (25 of 71) of patients. Potentially pathogenic variants were identified in clinically relevant genes in a further 7% (5 of 71) of cases, giving a total yield of clinical diagnoses in 42% of individuals. These findings provide evidence that WES can substantially decrease the number of unresolved white matter cases. Ann Neurol 2016;79:1031-1037.


Subject(s)
DNA Mutational Analysis , Exome/genetics , Leukoencephalopathies/diagnosis , Leukoencephalopathies/genetics , White Matter/pathology , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Leukoencephalopathies/pathology , Male , Mutation , Young Adult
2.
Am J Hum Genet ; 96(4): 675-81, 2015 Apr 02.
Article in English | MEDLINE | ID: mdl-25817015

ABSTRACT

Mutations in genes encoding aminoacyl-tRNA synthetases are known to cause leukodystrophies and genetic leukoencephalopathies-heritable disorders that result in white matter abnormalities in the central nervous system. Here we report three individuals (two siblings and an unrelated individual) with severe infantile epileptic encephalopathy, clubfoot, absent deep tendon reflexes, extrapyramidal symptoms, and persistently deficient myelination on MRI. Analysis by whole exome sequencing identified mutations in the nuclear-encoded alanyl-tRNA synthetase (AARS) in these two unrelated families: the two affected siblings are compound heterozygous for p.Lys81Thr and p.Arg751Gly AARS, and the single affected child is homozygous for p.Arg751Gly AARS. The two identified mutations were found to result in a significant reduction in function. Mutations in AARS were previously associated with an autosomal-dominant inherited form of axonal neuropathy, Charcot-Marie-Tooth disease type 2N (CMT2N). The autosomal-recessive AARS mutations identified in the individuals described here, however, cause a severe infantile epileptic encephalopathy with a central myelin defect and peripheral neuropathy, demonstrating that defects of alanyl-tRNA charging can result in a wide spectrum of disease manifestations.


Subject(s)
Abnormalities, Multiple/genetics , Alanine-tRNA Ligase/genetics , Epilepsy/genetics , Models, Molecular , Myelin Sheath/pathology , Peripheral Nervous System Diseases/genetics , Phenotype , Abnormalities, Multiple/pathology , Alanine-tRNA Ligase/chemistry , Amino Acid Sequence , Base Sequence , Epilepsy/pathology , Genes, Recessive/genetics , Humans , Infant , Infant, Newborn , Molecular Sequence Data , Mutation/genetics , Peripheral Nervous System Diseases/pathology , Prospective Studies , Sequence Analysis, DNA , Syndrome , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...