Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
J Neurophysiol ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958283

ABSTRACT

Humans rely on predictive mechanisms during visual processing to efficiently resolve incomplete or ambiguous sensory signals. While initial low-level sensory data are conveyed by feedforward connections, feedback connections are believed to shape sensory processing through conveyance of statistical predictions based on prior exposure to stimulus configurations. Individuals with autism spectrum disorder (ASD) show biases in stimulus processing toward parts rather than wholes, suggesting their sensory processing may be less shaped by statistical predictions acquired through prior exposure to global stimulus properties. Investigations of illusory contour (IC) processing in neurotypical (NT) adults have established a well-tested marker of contour integration characterized by a robust modulation of the visually evoked potential (VEP) - the IC-effect - that occurs over lateral occipital scalp during the timeframe of the N1 component. Converging evidence strongly supports the notion that this IC-effect indexes a signal with significant feedback contributions. Using high-density VEPs, we compared the IC-effect in 6-7-year-old children with ASD (n=32) or NT development (n=53). Both groups of children generated an IC-effect that was equivalent in amplitude. However, the IC-effect notably onset 21ms later in ASD, even though initial VEP afference was identical across groups. This suggests that feedforward information predominated during perceptual processing for 15% longer in ASD compared to NT children. This delay in the feedback dependent IC-effect, in the context of known developmental differences between feedforward and feedback fibers, suggests a potential pathophysiological mechanism of visual processing in ASD, whereby ongoing stimulus processing is less shaped by statistical prediction mechanisms.

2.
Neurophotonics ; 11(2): 024209, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38725801

ABSTRACT

Significance: Pain comprises a complex interaction between motor action and somatosensation that is dependent on dynamic interactions between the brain and spinal cord. This makes understanding pain particularly challenging as it involves rich interactions between many circuits (e.g., neural and vascular) and signaling cascades throughout the body. As such, experimentation on a single region may lead to an incomplete and potentially incorrect understanding of crucial underlying mechanisms. Aim: We aimed to develop and validate tools to enable detailed and extended observation of neural and vascular activity in the brain and spinal cord. The first key set of innovations was targeted to developing novel imaging hardware that addresses the many challenges of multisite imaging. The second key set of innovations was targeted to enabling bioluminescent (BL) imaging, as this approach can address limitations of fluorescent microscopy including photobleaching, phototoxicity, and decreased resolution due to scattering of excitation signals. Approach: We designed 3D-printed brain and spinal cord implants to enable effective surgical implantations and optical access with wearable miniscopes or an open window (e.g., for one- or two-photon microscopy or optogenetic stimulation). We also tested the viability for BL imaging and developed a novel modified miniscope optimized for these signals (BLmini). Results: We describe "universal" implants for acute and chronic simultaneous brain-spinal cord imaging and optical stimulation. We further describe successful imaging of BL signals in both foci and a new miniscope, the "BLmini," which has reduced weight, cost, and form-factor relative to standard wearable miniscopes. Conclusions: The combination of 3D-printed implants, advanced imaging tools, and bioluminescence imaging techniques offers a coalition of methods for understanding spinal cord-brain interactions. Our work has the potential for use in future research into neuropathic pain and other sensory disorders and motor behavior.

3.
Neurophotonics ; 11(2): 021005, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38450294

ABSTRACT

Significance: Bioluminescent optogenetics (BL-OG) offers a unique and powerful approach to manipulate neural activity both opto- and chemogenetically using a single actuator molecule (a LuMinOpsin, LMO). Aim: To further enhance the utility of BL-OG by improving the efficacy of chemogenetic (bioluminescence-driven) LMO activation. Approach: We developed novel luciferases optimized for Förster resonance energy transfer when fused to the fluorescent protein mNeonGreen, generating bright bioluminescent (BL) emitters spectrally tuned to Volvox Channelrhodopsin 1 (VChR1). Results: A new LMO generated from this approach (LMO7) showed significantly stronger BL-driven opsin activation compared to previous and other new variants. We extensively benchmarked LMO7 against LMO3 (current standard) and found significantly stronger neuronal activity modulation ex vivo and in vivo, and efficient modulation of behavior. Conclusions: We report a robust new option for achieving multiple modes of control in a single actuator and a promising engineering strategy for continued improvement of BL-OG.

4.
bioRxiv ; 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38293016

ABSTRACT

Humans rely on predictive mechanisms during visual processing to efficiently resolve incomplete or ambiguous sensory signals. While initial low-level sensory data are conveyed by feedforward connections, feedback connections are believed to shape sensory processing through conveyance of statistical predictions based on prior exposure to stimulus configurations. Individuals with autism spectrum disorder (ASD) show biases in stimulus processing toward parts rather than wholes, suggesting their sensory processing may be less shaped by statistical predictions acquired through prior exposure to global stimulus properties. Investigations of illusory contour (IC) processing in neurotypical (NT) adults have established a well-tested marker of contour integration characterized by a robust modulation of the visually evoked potential (VEP) - the IC-effect - that occurs over lateral occipital scalp during the timeframe of the N1 component. Converging evidence strongly supports the notion that this IC-effect indexes a signal with significant feedback contributions. Using high-density VEPs, we compared the IC-effect in 6-17-year-old children with ASD (n=32) or NT development (n=53). Both groups of children generated an IC-effect that was equivalent in amplitude. However, the IC-effect notably onset 21ms later in ASD, even though timing of initial VEP afference was identical across groups. This suggests that feedforward information predominated during perceptual processing for 15% longer in ASD compared to NT children. This delay in the feedback dependent IC-effect, in the context of known developmental differences between feedforward and feedback fibers, suggests a potential pathophysiological mechanism of visual processing in ASD, whereby ongoing stimulus processing is less shaped by statistical prediction mechanisms.

5.
bioRxiv ; 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37425712

ABSTRACT

Ca2+ plays many critical roles in cell physiology and biochemistry, leading researchers to develop a number of fluorescent small molecule dyes and genetically encodable probes that optically report changes in Ca2+ concentrations in living cells. Though such fluorescence-based genetically encoded Ca2+ indicators (GECIs) have become a mainstay of modern Ca2+ sensing and imaging, bioluminescence-based GECIs-probes that generate light through oxidation of a small-molecule by a luciferase or photoprotein-have several distinct advantages over their fluorescent counterparts. Bioluminescent tags do not photobleach, do not suffer from nonspecific autofluorescent background, and do not lead to phototoxicity since they do not require the extremely bright extrinsic excitation light typically required for fluorescence imaging, especially with 2-photon microscopy. Current BL GECIs perform poorly relative to fluorescent GECIs, producing small changes in bioluminescence intensity due to high baseline signal at resting Ca2+ concentrations and suboptimal Ca2+ affinities. Here, we describe the development of a new bioluminescent GECI, "CaBLAM," which displays a much higher contrast (dynamic range) than previously described bioluminescent GECIs coupled with a Ca2+ affinity suitable for capturing physiological changes in cytosolic Ca2+ concentration. Derived from a new variant of Oplophorus gracilirostris luciferase with superior in vitro properties and a highly favorable scaffold for insertion of sensor domains, CaBLAM allows for single-cell and subcellular resolution imaging of Ca2+ dynamics at high frame rates in cultured neurons. CaBLAM marks a significant milestone in the GECI timeline, enabling Ca2+ recordings with high spatial and temporal resolution without perturbing cells with intense excitation light.

6.
bioRxiv ; 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-37425735

ABSTRACT

SIGNIFICANCE: Bioluminescent optogenetics (BL-OG) offers a unique and powerful approach to manipulate neural activity both opto- and chemogenetically using a single actuator molecule (a LuMinOpsin, LMO). AIM: To further enhance the utility of BL-OG by improving the efficacy of chemogenetic (bioluminescence-driven) LMO activation. APPROACH: We developed novel luciferases optimized for Forster resonance energy transfer (FRET) when fused to the fluorescent protein mNeonGreen, generating bright bioluminescent (BL) emitters spectrally tuned to Volvox Channelrhodopsin 1 (VChR1). RESULTS: A new LMO generated from this approach (LMO7) showed significantly stronger BL-driven opsin activation compared to previous and other new variants. We extensively benchmarked LMO7 against LMO3 (current standard), and found significantly stronger neuronal activity modulation ex vivo and in vivo, and efficient modulation of behavior. CONCLUSIONS: We report a robust new option for achieving multiple modes of control in a single actuator, and a promising engineering strategy for continued improvement of BL-OG.

7.
Curr Res Physiol ; 6: 100101, 2023.
Article in English | MEDLINE | ID: mdl-37409154

ABSTRACT

Monoamine neurotransmitters such as noradrenalin are released from both synaptic vesicles (SVs) and large dense-core vesicles (LDCVs), the latter mediating extrasynaptic signaling. The contribution of synaptic versus extrasynaptic signaling to circuit function and behavior remains poorly understood. To address this question, we have previously used transgenes encoding a mutation in the Drosophila Vesicular Monoamine Transporter (dVMAT) that shifts amine release from SVs to LDCVs. To circumvent the use of transgenes with non-endogenous patterns of expression, we have now used CRISPR-Cas9 to generate a trafficking mutant in the endogenous dVMAT gene. To minimize disruption of the dVMAT coding sequence and a nearby RNA splice site, we precisely introduced a point mutation using single-stranded oligonucleotide repair. A predicted decrease in fertility was used as a phenotypic screen to identify founders in lieu of a visible marker. Phenotypic analysis revealed a defect in the ovulation of mature follicles and egg retention in the ovaries. We did not detect defects in the contraction of lateral oviducts following optogenetic stimulation of octopaminergic neurons. Our findings suggest that release of mature eggs from the ovary is disrupted by changing the balance of VMAT trafficking between SVs and LDCVs. Further experiments using this model will help determine the mechanisms that sensitize specific circuits to changes in synaptic versus extrasynaptic signaling.

8.
bioRxiv ; 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38234789

ABSTRACT

Significance: Pain is comprised of a complex interaction between motor action and somatosensation that is dependent on dynamic interactions between the brain and spinal cord. This makes understanding pain particularly challenging as it involves rich interactions between many circuits (e.g., neural and vascular) and signaling cascades throughout the body. As such, experimentation on a single region may lead to an incomplete and potentially incorrect understanding of crucial underlying mechanisms. Aim: Here, we aimed to develop and validate new tools to enable detailed and extended observation of neural and vascular activity in the brain and spinal cord. The first key set of innovations were targeted to developing novel imaging hardware that addresses the many challenges of multi-site imaging. The second key set of innovations were targeted to enabling bioluminescent imaging, as this approach can address limitations of fluorescent microscopy including photobleaching, phototoxicity and decreased resolution due to scattering of excitation signals. Approach: We designed 3D-printed brain and spinal cord implants to enable effective surgical implantations and optical access with wearable miniscopes or an open window (e.g., for one- or two-photon microscopy or optogenetic stimulation). We also tested the viability for bioluminescent imaging, and developed a novel modified miniscope optimized for these signals (BLmini). Results: Here, we describe novel 'universal' implants for acute and chronic simultaneous brain-spinal cord imaging and optical stimulation. We further describe successful imaging of bioluminescent signals in both foci, and a new miniscope, the 'BLmini,' which has reduced weight, cost and form-factor relative to standard wearable miniscopes. Conclusions: The combination of 3D printed implants, advanced imaging tools, and bioluminescence imaging techniques offers a new coalition of methods for understanding spinal cord-brain interactions. This work has the potential for use in future research into neuropathic pain and other sensory disorders and motor behavior.

9.
Am J Ophthalmol Case Rep ; 26: 101483, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35313475

ABSTRACT

Purpose: We present multimodal imaging of an interesting case of a 78-year-old man who developed large ciliochoroidal detachments and macular subretinal and intraretinal fluid in the right eye following bilateral neodymium-doped yttrium aluminium garnet (Nd:YAG) laser peripheral iridotomies (LPIs). Observations: The ciliochoroidal detachments developed in the absence of documented post-procedure hypotony or intraocular pressure fluctuation. Ultrasound biomicroscopy (UBM) confirmed serous ciliochoroidal detachment. There are a small number of cases of ciliochoroidal detachments developing after peripheral iridotomy, but these have involved either argon laser, significant decrease in intraocular pressure, or underlying ocular conditions or structural abnormalities, such as Vogt-Koyanagi-Harada (VKH) or nanophthalmos. Conclusions: Serous ciliochoroidal detachments following the relatively non-invasive procedure of LPI are rare occurrences. We present our case in hopes of increasing awareness of this potential acute complication. We also discuss the diagnostic challenges of this unique case, the extensive work up, and current status of the patient.

10.
Commun Biol ; 5(1): 33, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35017641

ABSTRACT

Understanding percepts, engrams and actions requires methods for selectively modulating synaptic communication between specific subsets of interconnected cells. Here, we develop an approach to control synaptically connected elements using bioluminescent light: Luciferase-generated light, originating from a presynaptic axon terminal, modulates an opsin in its postsynaptic target. Vesicular-localized luciferase is released into the synaptic cleft in response to presynaptic activity, creating a real-time Optical Synapse. Light production is under experimenter-control by introduction of the small molecule luciferin. Signal transmission across this optical synapse is temporally defined by the presence of both the luciferin and presynaptic activity. We validate synaptic Interluminescence by multi-electrode recording in cultured neurons and in mice in vivo. Interluminescence represents a powerful approach to achieve synapse-specific and activity-dependent circuit control in vivo.


Subject(s)
Neurons/metabolism , Optogenetics/methods , Synapses/metabolism , Animals , Brain/cytology , Cells, Cultured , Luciferases/genetics , Luciferases/metabolism , Luciferins/metabolism , Male , Mice , Mice, Transgenic , Rats
11.
PLoS Comput Biol ; 17(9): e1009358, 2021 09.
Article in English | MEDLINE | ID: mdl-34534211

ABSTRACT

The human brain tracks amplitude fluctuations of both speech and music, which reflects acoustic processing in addition to the encoding of higher-order features and one's cognitive state. Comparing neural tracking of speech and music envelopes can elucidate stimulus-general mechanisms, but direct comparisons are confounded by differences in their envelope spectra. Here, we use a novel method of frequency-constrained reconstruction of stimulus envelopes using EEG recorded during passive listening. We expected to see music reconstruction match speech in a narrow range of frequencies, but instead we found that speech was reconstructed better than music for all frequencies we examined. Additionally, models trained on all stimulus types performed as well or better than the stimulus-specific models at higher modulation frequencies, suggesting a common neural mechanism for tracking speech and music. However, speech envelope tracking at low frequencies, below 1 Hz, was associated with increased weighting over parietal channels, which was not present for the other stimuli. Our results highlight the importance of low-frequency speech tracking and suggest an origin from speech-specific processing in the brain.


Subject(s)
Auditory Perception/physiology , Brain/physiology , Music , Speech Perception/physiology , Speech/physiology , Acoustic Stimulation/methods , Adolescent , Adult , Computational Biology , Computer Simulation , Electroencephalography/statistics & numerical data , Female , Humans , Linear Models , Male , Models, Neurological , Principal Component Analysis , Speech Acoustics , Young Adult
12.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 4385-4389, 2020 07.
Article in English | MEDLINE | ID: mdl-33018967

ABSTRACT

In vivo fluorescence miniature microscopy has recently proven a major advance, enabling cellular imaging in freely behaving animals. However, fluorescence imaging suffers from autofluorescence, phototoxicity, photobleaching and non- homogeneous illumination artifacts. These factors limit the quality and time course of data collection. Bioluminescence provides an alternative kind of activity-dependent light indicator. Bioluminescent calcium indicators do not require light input, instead generating photons through chemiluminescence. As such, limitations inherent to the requirement for light presentation are eliminated. Further, bioluminescent indicators also do not require excitation light optics: the removal of these components should make a lighter and lower cost microscope with fewer assembly parts. While there has been significant recent progress in making brighter and faster bioluminescence indicators, the advances in imaging hardware have not yet been realized. A hardware challenge is that despite potentially higher signal-to-noise of bioluminescence, the signal strength is lower than that of fluorescence. An open question we address in this report is whether fluorescent miniature microscopes can be rendered sensitive enough to detect bioluminescence. We demonstrate this possibility in vitro and in vivo by implementing optimizations of the UCLA fluorescent miniscope v3.2. These optimizations yielded a miniscope (BLmini) which is 22% lighter in weight, has 45% fewer components, is up to 58% less expensive, offers up to 15 times stronger signal and is sensitive enough to capture spatiotemporal dynamics of bioluminescence in the brain with a signal-to-noise ratio of 34 dB.


Subject(s)
Brain , Immunologic Tests , Animals , Diagnostic Tests, Routine , Microscopy, Fluorescence , Photobleaching
13.
Neurochem Int ; 137: 104744, 2020 07.
Article in English | MEDLINE | ID: mdl-32315665

ABSTRACT

The neurotransmitter acetylcholine (ACh) is involved in critical organismal functions that include locomotion and cognition. Importantly, alterations in the cholinergic system are a key underlying factor in cognitive defects associated with aging. One essential component of cholinergic synaptic transmission is the vesicular ACh transporter (VAChT), which regulates the packaging of ACh into synaptic vesicles for extracellular release. Mutations that cause a reduction in either protein level or activity lead to diminished locomotion ability whereas complete loss of function of VAChT is lethal. While much is known about the function of VAChT, the direct role of altered ACh release and its association with either an impairment or an enhancement of cognitive function are still not fully understood. We hypothesize that point mutations in Vacht cause age-related deficits in cholinergic-mediated behaviors such as locomotion, and learning and memory. Using Drosophila melanogaster as a model system, we have studied several mutations within Vacht and observed their effect on survivability and locomotive behavior. Here we report for the first time a weak hypomorphic Vacht allele that shows a differential effect on ACh-linked behaviors. We also demonstrate that partially rescued Vacht point mutations cause an allele-dependent deficit in lifespan and defects in locomotion ability. Moreover, using a thorough data analytics strategy to identify exploratory behavioral patterns, we introduce new paradigms for measuring locomotion-related activities that could not be revealed or detected by a simple measure of the average speed alone. Together, our data indicate a role for VAChT in the maintenance of longevity and locomotion abilities in Drosophila and we provide additional measurements of locomotion that can be useful in determining subtle changes in Vacht function on locomotion-related behaviors.


Subject(s)
Behavior, Animal/physiology , Longevity/physiology , Synaptic Transmission/physiology , Vesicular Acetylcholine Transport Proteins/metabolism , Animals , Cognition/physiology , Drosophila melanogaster/metabolism , Learning/physiology , Locomotion/physiology , Synaptic Vesicles/metabolism
14.
Article in English | MEDLINE | ID: mdl-32116583

ABSTRACT

BACKGROUND: Maladaptive reactivity to sensory inputs is commonly observed in neurodevelopmental disorders (e.g., autism, ADHD). Little is known, however, about the underlying neural mechanisms. For some children, atypical sensory reactivity is the primary complaint, despite absence of another identifiable neurodevelopmental diagnosis. Studying Sensory Processing Disorder (SPD) may well provide a window into the neuropathology of these symptoms. It has been proposed that a deficit in sensory integration underlies the SPD phenotype, but objective quantification of sensory integration is lacking. Here we used neural and behavioral measures of multisensory integration (MSI), which would be affected by impaired sensory integration and for which there are well accepted objective measures, to test whether failure to integrate across the senses is associated with atypical sensory reactivity in SPD. An autism group served to determine if observed differences were unique to SPD. METHODS: We tested whether children aged 6-16 years with SPD (N = 14) integrate multisensory inputs differently from age-matched typically developing controls (TD: N = 54), or from children with an autism spectrum disorder (ASD: N = 44). Participants performed a simple reaction-time task to the occurrence of auditory, visual, and audiovisual stimuli presented in random order, while high-density recordings of electrical brain activity were made. RESULTS: Children with SPD showed large reductions in the extent to which they benefited from multisensory inputs compared to TDs. The ASD group showed similarly reduced response speeding to multisensory relative to unisensory inputs. Neural evidence for MSI was seen across all three groups, with the multisensory response differing from the sum of the unisensory responses. Post hoc tests suggested the possibility of enhanced MSI in SPD in timeframes consistent with cortical sensory registration (∼60 ms), followed by reduced MSI during a timeframe consistent with object formation (∼130 ms). The ASD group also showed reduced MSI in the later timeframe. CONCLUSION: Children with SPD showed reduction in their ability to benefit from redundant audio-visual inputs, similar to children with ASD. Neurophysiological recordings, on the other hand, showed that major indices of MSI were largely intact, although post hoc testing pointed to periods of potential differential processing. While these exploratory electrophysiological observations point to potential sensory-perceptual differences in multisensory processing in SPD, it remains equally plausible at this stage that later attentional processing differences may yet prove responsible for the multisensory behavioral deficits uncovered here.

15.
ESC Heart Fail ; 6(6): 1149-1160, 2019 12.
Article in English | MEDLINE | ID: mdl-31389157

ABSTRACT

AIMS: Morphine is shown to relieve chronic breathlessness in chronic obstructive pulmonary disease. There are no definitive data in people with heart failure. We aimed to determine the effectiveness and cost-effectiveness of 12 weeks morphine therapy for the relief of chronic breathlessness in people with chronic heart failure compared with placebo. METHODS AND RESULTS: Parallel group, double-blind, randomized, placebo-controlled, phase III trial of 20 mg daily oral modified release morphine was conducted in 13 sites in England and Scotland: hospital/community cardiology or palliative care outpatients. The primary analysis compared between-group numerical rating scale average breathlessness/24 hours at week 4 using a covariance pattern linear mixed model. Secondary outcomes included treatment-emergent harms (worse or new). The trial closed early due to slow recruitment, randomizing 45 participants [average age 72 (range 39-89) years; 84% men; 98% New York Heart Association class III]. For the primary analysis, the adjusted mean difference was 0.26 (95% confidence interval, -0.86 to 1.37) in favour of placebo. All other breathlessness measures improved in both groups (week 4 change-from-baseline) but by more in those assigned to morphine. Neither group was excessively drowsy at baseline or week 4. There were no between-group differences in quality of life (Kansas) or cognition (Montreal) at any time point. There was no exercise-related desaturation and no change between baseline and week 4 in either group. There was no change in vital signs at week 4. The natriuretic peptide measures fell in both groups but by more in the morphine group [morphine 2169 (1092, 3851) pg/mL vs. placebo 2851 (1694, 5437)] pg/mL. There was no excess serious adverse events in the morphine group. Treatment-emergent harms during the first week were more common in the morphine group; all apart from 1 were ≤ grade 2. CONCLUSIONS: We could not answer our primary objectives due to inadequate power. However, we provide novel placebo-controlled medium-term benefit and safety data useful for clinical practice and future trial design. Morphine should only be prescribed in this population when other measures are unhelpful and with early management of side effects.


Subject(s)
Dyspnea , Heart Failure/complications , Morphine , Narcotics , Administration, Oral , Adult , Aged , Aged, 80 and over , Chronic Disease/drug therapy , Double-Blind Method , Dyspnea/drug therapy , Dyspnea/etiology , Female , Humans , Male , Middle Aged , Morphine/administration & dosage , Morphine/adverse effects , Morphine/therapeutic use , Narcotics/administration & dosage , Narcotics/adverse effects , Narcotics/therapeutic use
16.
Dev Sci ; 19(3): 469-87, 2016 May.
Article in English | MEDLINE | ID: mdl-26190204

ABSTRACT

The ability to attend to one among multiple sources of information is central to everyday functioning. Just as central is the ability to switch attention among competing inputs as the task at hand changes. Such processes develop surprisingly slowly, such that even into adolescence, we remain slower and more error prone at switching among tasks compared to young adults. The amplitude of oscillations in the alpha band (~8-14 Hz) tracks the top-down deployment of attention, and there is growing evidence that alpha can act as a suppressive mechanism to bias attention away from distracting sensory input. Moreover, the amplitude of alpha has also been shown to be sensitive to the demands of switching tasks. To understand the neural basis of protracted development of these executive functions, we recorded high-density electrophysiology from school-aged children (8-12 years), adolescents (13-17), and young adults (18-34) as they performed a cued inter-sensory selective attention task. The youngest participants showed increased susceptibility to distracting inputs that was especially evident when switching tasks. Concordantly, they showed weaker and delayed onset of alpha modulation compared to the older groups. Thus the flexible and efficient deployment of alpha to bias competition among attentional sets remains underdeveloped in school-aged children.


Subject(s)
Attention/physiology , Brain/physiology , Cues , Psychomotor Performance/physiology , Acoustic Stimulation/methods , Adolescent , Adult , Age Factors , Alpha Rhythm , Brain Mapping , Chi-Square Distribution , Child , Electroencephalography/methods , Female , Humans , Male , Photic Stimulation/methods , Young Adult
17.
Eur J Neurosci ; 39(11): 1960-72, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24689983

ABSTRACT

We assessed the role of alpha-band oscillatory activity during a task-switching design that required participants to switch between an auditory and a visual task, while task-relevant audiovisual inputs were simultaneously presented. Instructional cues informed participants which task to perform on a given trial and we assessed alpha-band power in the short 1.35-s period intervening between the cue and the task-imperative stimuli, on the premise that attentional biasing mechanisms would be deployed to resolve competition between the auditory and visual inputs. Prior work had shown that alpha-band activity was differentially deployed depending on the modality of the cued task. Here, we asked whether this activity would, in turn, be differentially deployed depending on whether participants had just made a switch of task or were being asked to simply repeat the task. It is well established that performance speed and accuracy are poorer on switch than on repeat trials. Here, however, the use of instructional cues completely mitigated these classic switch-costs. Measures of alpha-band synchronisation and desynchronisation showed that there was indeed greater and earlier differential deployment of alpha-band activity on switch vs. repeat trials. Contrary to our hypothesis, this differential effect was entirely due to changes in the amount of desynchronisation observed during switch and repeat trials of the visual task, with more desynchronisation over both posterior and frontal scalp regions during switch-visual trials. These data imply that particularly vigorous, and essentially fully effective, anticipatory biasing mechanisms resolved the competition between competing auditory and visual inputs when a rapid switch of task was required.


Subject(s)
Alpha Rhythm , Anticipation, Psychological , Auditory Cortex/physiology , Psychomotor Performance , Visual Cortex/physiology , Adolescent , Adult , Cortical Synchronization , Cues , Female , Humans , Male
18.
Eur J Neurosci ; 39(9): 1499-507, 2014 May.
Article in English | MEDLINE | ID: mdl-24606564

ABSTRACT

We often face the challenge of simultaneously attending to multiple non-contiguous regions of space. There is ongoing debate as to how spatial attention is divided under these situations. Whereas, for several years, the predominant view was that humans could divide the attentional spotlight, several recent studies argue in favor of a unitary spotlight that rhythmically samples relevant locations. Here, this issue was addressed by the use of high-density electrophysiology in concert with the multifocal m-sequence technique to examine visual evoked responses to multiple simultaneous streams of stimulation. Concurrently, we assayed the topographic distribution of alpha-band oscillatory mechanisms, a measure of attentional suppression. Participants performed a difficult detection task that required simultaneous attention to two stimuli in contiguous (undivided) or non-contiguous parts of space. In the undivided condition, the classic pattern of attentional modulation was observed, with increased amplitude of the early visual evoked response and increased alpha amplitude ipsilateral to the attended hemifield. For the divided condition, early visual responses to attended stimuli were also enhanced, and the observed multifocal topographic distribution of alpha suppression was in line with the divided attention hypothesis. These results support the existence of divided attentional spotlights, providing evidence that the corresponding modulation occurs during initial sensory processing time-frames in hierarchically early visual regions, and that suppressive mechanisms of visual attention selectively target distracter locations during divided spatial attention.


Subject(s)
Attention/physiology , Cerebral Cortex/physiology , Evoked Potentials, Visual , Space Perception/physiology , Adult , Electroencephalography , Female , Humans , Male , Young Adult
19.
Autism Res ; 7(4): 442-58, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24678054

ABSTRACT

When attention is directed to one information stream over another, the brain can be configured in advance to selectively process the relevant stream and suppress potentially distracting inputs. One key mechanism of suppression is through the deployment of anticipatory alpha-band (~10 Hz) oscillatory activity, with greater alpha-band power observed in cortical regions that will ultimately process the distracting stream. Atypical attention has been implicated in autism spectrum disorder (ASD), including greater interference by distracting task-irrelevant inputs. Here we tested the integrity of these alpha-band mechanisms in ASD using an intersensory attention task. Electroencephalography (EEG) was recorded while participants were cued on a trial-by-trial basis to selectively deploy attention to the visual or auditory modality in anticipation of a target within the cued modality. Whereas typically developing (TD) children showed the predicted alpha-band modulation, with increased alpha-band power over parieto-occipital scalp when attention was deployed to the auditory compared with the visual modality, this differential pattern was entirely absent at the group level in the ASD cohort. Further, only the ASD group showed impaired performance due to the presence of task-irrelevant sensory information. These data suggest that impaired modulation of alpha-band activity plays a role in increased distraction from extraneous sensory inputs in ASD.


Subject(s)
Acoustic Stimulation/methods , Attention , Brain/physiopathology , Child Development Disorders, Pervasive/physiopathology , Electroencephalography/methods , Photic Stimulation/methods , Adolescent , Auditory Perception , Child , Child Development Disorders, Pervasive/psychology , Cues , Female , Humans , Male , Task Performance and Analysis , Visual Perception
20.
BMC Geriatr ; 12: 70, 2012 Nov 14.
Article in English | MEDLINE | ID: mdl-23150980

ABSTRACT

BACKGROUND: Many older people in long-term care do not receive evidence-based diagnosis or management for heart failure; it is not known whether this can be achieved for this population. We initiated an onsite heart failure service, compared with 'usual care' with the aim of establishing the feasibility of accurate diagnosis and appropriate management. METHODS: A pilot randomised controlled trial which randomised residents from 33 care facilities in North-East England with left ventricular systolic dysfunction (LVSD) to usual care or an onsite heart failure service. The primary outcome was the optimum prescription of angiotensin-converting enzyme inhibitors and beta-adrenergic antagonists at 6 months. RESULTS: Of 399 echocardiographically-screened residents aged 65-100 years, 30 subjects with LVSD were eligible; 28 (93%) consented and were randomised (HF service: 16; routine care: 12). Groups were similar at baseline; six month follow-up was completed for 25 patients (89%); 3 (11%) patients died. Results for the primary outcome were not statistically significant but there was a consistent pattern of increased drug use and titration to optimum dose in the intervention group (21% compared to 0% receiving routine care, p=0.250). Hospitalisation rates, quality of life and mortality at 6 months were similar between groups. CONCLUSIONS: This study demonstrated the feasibility of an on-site heart failure service for older long-term care populations. Optimisation of medication appeared possible without adversely affecting quality of life; this questions clinicians' concerns about adverse effects in this group. This has international implications for managing such patients. These methods should be replicated in a large-scale study to quantify the scale of benefit. TRIAL REGISTRATION: ISRCTN19781227 http://www.controlled-trials.com/ISRCTN19781227


Subject(s)
Evidence-Based Medicine/methods , Heart Failure/diagnosis , Heart Failure/therapy , Aged , Aged, 80 and over , Disease Management , Feasibility Studies , Female , Follow-Up Studies , Heart Failure/epidemiology , Humans , Long-Term Care/methods , Male , Pilot Projects , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...