Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Biol ; 428(24 Pt B): 4981-4992, 2016 12 04.
Article in English | MEDLINE | ID: mdl-27984042

ABSTRACT

Oct4 is a transcription factor required for maintaining pluripotency and self-renewal in stem cells. Prior to differentiation, Oct4 must be silenced to allow for the development of the three germ layers in the developing embryo. This fine-tuning is controlled by the nuclear receptors (NRs), liver receptor homolog-1 (LRH-1) and germ cell nuclear factor (GCNF). Liver receptor homolog-1 is responsible for driving the expression of Oct4 where GCNF represses its expression upon differentiation. Both receptors bind to a DR0 motif located within the Oct4 promoter. Here, we present the first structure of mouse GCNF DNA-binding domain in complex with the Oct4 DR0. The overall structure revealed two molecules bound in a head-to-tail fashion on opposite sides of the DNA. Additionally, we solved the structure of the human LRH-1 DNA-binding domain bound to the same element. We explore the structural elements that govern Oct4 recognition by these two NRs.


Subject(s)
Nuclear Receptor Subfamily 6, Group A, Member 1/chemistry , Nuclear Receptor Subfamily 6, Group A, Member 1/metabolism , Octamer Transcription Factor-3/biosynthesis , Octamer Transcription Factor-3/chemistry , Receptors, Cytoplasmic and Nuclear/chemistry , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Crystallography, X-Ray , DNA/metabolism , Gene Expression Regulation, Developmental , Humans , Mice , Models, Molecular , Promoter Regions, Genetic , Protein Binding , Protein Conformation
2.
Cell ; 159(1): 58-68, 2014 Sep 25.
Article in English | MEDLINE | ID: mdl-25259920

ABSTRACT

Complex gene regulatory networks require transcription factors (TFs) to bind distinct DNA sequences. To understand how novel TF specificity evolves, we combined phylogenetic, biochemical, and biophysical approaches to interrogate how DNA recognition diversified in the steroid hormone receptor (SR) family. After duplication of the ancestral SR, three mutations in one copy radically weakened binding to the ancestral estrogen response element (ERE) and improved binding to a new set of DNA sequences (steroid response elements, SREs). They did so by establishing unfavorable interactions with ERE and abolishing unfavorable interactions with SRE; also required were numerous permissive substitutions, which nonspecifically improved cooperativity and affinity of DNA binding. Our findings indicate that negative determinants of binding play key roles in TFs' DNA selectivity and-with our prior work on the evolution of SR ligand specificity during the same interval-show how a specific new gene regulatory module evolved without interfering with the integrity of the ancestral module.


Subject(s)
Evolution, Molecular , Gene Regulatory Networks , Receptors, Steroid/chemistry , Receptors, Steroid/genetics , Response Elements , Animals , Crystallography, X-Ray , Humans , Models, Molecular , Molecular Sequence Data , Phylogeny , Receptors, Steroid/metabolism
3.
Proc Natl Acad Sci U S A ; 111(10): 3763-8, 2014 Mar 11.
Article in English | MEDLINE | ID: mdl-24550457

ABSTRACT

Uricase is an enzyme involved in purine catabolism and is found in all three domains of life. Curiously, uricase is not functional in some organisms despite its role in converting highly insoluble uric acid into 5-hydroxyisourate. Of particular interest is the observation that apes, including humans, cannot oxidize uric acid, and it appears that multiple, independent evolutionary events led to the silencing or pseudogenization of the uricase gene in ancestral apes. Various arguments have been made to suggest why natural selection would allow the accumulation of uric acid despite the physiological consequences of crystallized monosodium urate acutely causing liver/kidney damage or chronically causing gout. We have applied evolutionary models to understand the history of primate uricases by resurrecting ancestral mammalian intermediates before the pseudogenization events of this gene family. Resurrected proteins reveal that ancestral uricases have steadily decreased in activity since the last common ancestor of mammals gave rise to descendent primate lineages. We were also able to determine the 3D distribution of amino acid replacements as they accumulated during evolutionary history by crystallizing a mammalian uricase protein. Further, ancient and modern uricases were stably transfected into HepG2 liver cells to test one hypothesis that uricase pseudogenization allowed ancient frugivorous apes to rapidly convert fructose into fat. Finally, pharmacokinetics of an ancient uricase injected in rodents suggest that our integrated approach provides the foundation for an evolutionarily-engineered enzyme capable of treating gout and preventing tumor lysis syndrome in human patients.


Subject(s)
Adaptation, Biological/genetics , Evolution, Molecular , Hominidae/genetics , Models, Molecular , Phylogeny , Protein Conformation , Urate Oxidase/genetics , Adipose Tissue/metabolism , Animals , Bayes Theorem , Computational Biology , DNA Primers/genetics , Fruit/metabolism , Hep G2 Cells , Humans , Models, Biological , Models, Genetic , Pseudogenes/genetics , Rats , Rats, Sprague-Dawley , Urate Oxidase/chemistry , Urate Oxidase/metabolism
4.
Nucleic Acids Res ; 37(18): 6042-53, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19700770

ABSTRACT

Motor proteins that translocate on nucleic acids are key players in gene expression and maintenance. While the function of these proteins is diverse, they are driven by highly conserved core motor domains. In transcription-coupled DNA repair, motor activity serves to remove RNA polymerase stalled on damaged DNA, making the lesion accessible for repair. Structural and biochemical data on the bacterial transcription-repair coupling factor Mfd suggest that this enzyme undergoes large conformational changes from a dormant state to an active state upon substrate binding. Mfd can be functionally dissected into an N-terminal part instrumental in recruiting DNA repair proteins (domains 1-3, MfdN), and a C-terminal part harboring motor activity (domains 4-7, MfdC). We show that isolated MfdC has elevated ATPase and motor activities compared to the full length protein. While MfdN has large effects on MfdC activity and thermostability in cis, these effects are not observed in trans. The structure of MfdN is independent of interactions with MfdC, implying that MfdN acts as a clamp that restrains motions of the motor domains in the dormant state. We conclude that releasing MfdN:MfdC interactions serves as a central molecular switch that upregulates Mfd functions during transcription-coupled DNA repair.


Subject(s)
Bacterial Proteins/chemistry , Transcription Factors/chemistry , Adenosine Triphosphatases/metabolism , Bacterial Proteins/metabolism , DNA/metabolism , Models, Molecular , Protein Structure, Tertiary , Temperature , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...