Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Dis Aquat Organ ; 156: 89-98, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38095364

ABSTRACT

As part of a study to investigate the use of the scuticociliate Orchitophrya stellarum as a biological control for the invasive seastar Asterias amurensis in Australia, we collected prevalence data for O. stellarum from 3 seastar species (A. amurensis, A. rubens, Pisaster ochraceus) between 1996 and 1999 from the Pacific (Australia, Japan, Korea, Canada) and Atlantic (France, Netherlands, Canada) oceans. In the Pacific Ocean, for the first time, we found O. stellarum in male A. amurensis in Korea and female A. amurensis in Japan. The parasite was not detected in the invasive A. amurensis from Australia. There was no significant difference between size of infected and uninfected male seastars, nor a correlation between biased sex ratio and parasite prevalence in populations in the Pacific or Atlantic oceans. Therefore, unlike other studies, we found size and sex ratio in seastar populations in the field are unreliable indicators of parasite impacts. Regular monitoring of infected seastar populations in the field would be useful to better understand how sex ratio varies with parasite prevalence. We recommend laboratory studies under controlled conditions to determine the effect of O. stellarum on seastar populations.


Subject(s)
Oligohymenophorea , Starfish , Male , Female , Animals , Starfish/parasitology , Prevalence , Oceans and Seas , Atlantic Ocean , Pacific Ocean
2.
Nat Commun ; 9(1): 2862, 2018 08 21.
Article in English | MEDLINE | ID: mdl-30131568

ABSTRACT

Oligodendrocyte progenitor cells (OPC) undergo asymmetric cell division (ACD) to generate one OPC and one differentiating oligodendrocyte (OL) progeny. Loss of pro-mitotic proteoglycan and OPC marker NG2 in the OL progeny is the earliest immunophenotypic change of unknown mechanism that indicates differentiation commitment. Here, we report that expression of the mouse homolog of Drosophila tumor suppressor Lethal giant larvae 1 (Lgl1) is induced during OL differentiation. Lgl1 conditional knockout OPC progeny retain NG2 and show reduced OL differentiation, while undergoing more symmetric self-renewing divisions at the expense of asymmetric divisions. Moreover, Lgl1 and hemizygous Ink4a/Arf knockouts in OPC synergistically induce gliomagenesis. Time lapse and total internal reflection microscopy reveals a critical role for Lgl1 in NG2 endocytic routing and links aberrant NG2 recycling to failed differentiation. These data establish Lgl1 as a suppressor of gliomagenesis and positive regulator of asymmetric division and differentiation in the healthy and demyelinated murine brain.


Subject(s)
Glycoproteins/metabolism , Oligodendroglia/cytology , Oligodendroglia/metabolism , Proteoglycans/metabolism , Animals , Asymmetric Cell Division/drug effects , Cell Differentiation/drug effects , Cells, Cultured , Fluorescent Antibody Technique , Glycoproteins/genetics , Immunoblotting , Mice , Monensin/pharmacology , Oligodendroglia/drug effects , Signal Transduction/drug effects
3.
Oncotarget ; 7(46): 75839-75853, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27713119

ABSTRACT

Inhibitors of BRAFV600E kinase are currently under investigations in preclinical and clinical studies involving BRAFV600E glioma. Studies demonstrated clinical response to such individualized therapy in the majority of patients whereas in some patients tumors continue to grow despite treatment. To study resistance mechanisms, which include feedback activation of mitogen-activated protein kinase (MAPK) signaling in melanoma, we developed a luciferase-modified cell line (2341luc) from a BrafV600E mutant and Cdkn2a- deficient murine high-grade glioma, and analyzed its molecular responses to BRAFV600E- and MAPK kinase (MEK)-targeted inhibition. Immunocompetent, syngeneic FVB/N mice with intracranial grafts of 2341luc were tested for effects of BRAFV600E and MEK inhibitor treatments, with bioluminescence imaging up to 14-days after start of treatment and survival analysis as primary indicators of inhibitor activity. Intracranial injected tumor cells consistently generated high-grade glioma-like tumors in syngeneic mice. Intraperitoneal daily delivery of BRAFV600E inhibitor dabrafenib only transiently suppressed MAPK signaling, and rather increased Akt signaling and failed to extend survival for mice with intracranial 2341luc tumor. MEK inhibitor trametinib delivered by oral gavage daily suppressed MAPK pathway more effectively and had a more durable anti-growth effect than dabrafenib as well as a significant survival benefit. Compared with either agent alone, combined BRAFV600E and MEK inhibitor treatment was more effective in reducing tumor growth and extending animal subject survival, as corresponding to sustained MAPK pathway inhibition. Results derived from the 2341luc engraftment model application have clinical implications for the management of BRAFV600E glioma.


Subject(s)
Antineoplastic Agents/pharmacology , Glioma/genetics , Glioma/metabolism , MAP Kinase Signaling System/drug effects , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Animals , Apoptosis/drug effects , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Codon , Disease Models, Animal , Enzyme Activation/drug effects , Gene Expression , Gene Knockout Techniques , Genotype , Glioma/drug therapy , Glioma/pathology , Humans , Mice , Molecular Targeted Therapy , Mutation , Neoplasm Grading , Transplantation, Isogeneic
4.
Article in English | MEDLINE | ID: mdl-23507987

ABSTRACT

Diffusion MRI has become an invaluable tool for studying white matter microstructure and brain connectivity. The emergence of quantitative susceptibility mapping and susceptibility tensor imaging (STI) has provided another unique tool for assessing the structure of white matter. In the highly ordered white matter structure, diffusion MRI measures hindered water mobility induced by various tissue and cell membranes, while susceptibility sensitizes to the molecular composition and axonal arrangement. Integrating these two methods may produce new insights into the complex physiology of white matter. In this study, we investigated the relationship between diffusion and magnetic susceptibility in the white matter. Experiments were conducted on phantoms and human brains in vivo. Diffusion properties were quantified with the diffusion tensor model and also with the higher order tensor model based on the cumulant expansion. Frequency shift and susceptibility tensor were measured with quantitative susceptibility mapping and susceptibility tensor imaging. These diffusion and susceptibility quantities were compared and correlated in regions of single fiber bundles and regions of multiple fiber orientations. Relationships were established with similarities and differences identified. It is believed that diffusion MRI and susceptibility MRI provide complementary information of the microstructure of white matter. Together, they allow a more complete assessment of healthy and diseased brains.

SELECTION OF CITATIONS
SEARCH DETAIL
...