Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Magn Reson Med ; 79(5): 2833-2841, 2018 05.
Article in English | MEDLINE | ID: mdl-28905426

ABSTRACT

PURPOSE: To develop a new optically controlled on-coil amplifier that facilitates safe use of multi-channel radiofrequency (RF) transmission in MRI by real-time monitoring of signal phase and amplitude. METHODS: Monitoring was carried out with a 4-channel prototype system by sensing, down sampling, digitizing, and optically transmitting the RF transmit signal to a remote PC to control the amplifiers. Performance was evaluated with benchtop and 7 T MRI experiments. RESULTS: Monitored amplitude and phase were stable across repetitions and had standard deviations of 0.061 µT and 0.0073 rad, respectively. The feedback system allowed inter-channel phase and B1 amplitude to be adjusted within two iterations. MRI experiments demonstrated the feasibility of this approach to perform safe and accurate multi-channel RF transmission and monitoring at high field. CONCLUSION: We demonstrated a 4-channel transceiver system based on optically controlled on-coil amplifiers with RF signal monitoring and feedback control. The approach allows the safe and precise control of RF transmission fields, required to achieve uniform excitation at high field. Magn Reson Med 79:2833-2841, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Subject(s)
Amplifiers, Electronic , Magnetic Resonance Imaging/instrumentation , Radio Waves , Equipment Design , Feedback , Phantoms, Imaging
2.
Magn Reson Med ; 76(1): 340-9, 2016 07.
Article in English | MEDLINE | ID: mdl-26256671

ABSTRACT

PURPOSE: We tested the feasibility of implementing parallel transmission (pTX) for high-field MRI using a radiofrequency (RF) amplifier design to be located on or in the immediate vicinity of an RF transmit coil. METHOD: We designed a current-source switch-mode amplifier based on miniaturized, nonmagnetic electronics. Optical RF carrier and envelope signals to control the amplifier were derived, through a custom-built interface, from the RF source accessible in the scanner control. Amplifier performance was tested by benchtop measurements as well as with imaging at 7T (300 MHz) and 11.7 T (500 MHz). The ability to perform pTX was evaluated by measuring interchannel coupling and phase adjustment in a two-channel setup. RESULTS: The amplifier delivered in excess of 44 W RF power and caused minimal interference with MRI. The interface derived accurate optical control signals with carrier frequencies ranging from 64 to 750 MHz. Decoupling better than 14 dB was obtained between two coil loops separated by only 1 cm. Application to MRI was demonstrated by acquiring artifact-free images at 7 T and 11.7 T. CONCLUSION: We propose an optically controlled miniaturized RF amplifier for on-coil implementation at high fields that should facilitate implementation of high-density pTX arrays. Magn Reson Med 76:340-349, 2016. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.


Subject(s)
Amplifiers, Electronic , Image Enhancement/instrumentation , Magnetic Resonance Imaging/instrumentation , Magnetics/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Electronics, Medical/instrumentation , Equipment Design , Equipment Failure Analysis , Feasibility Studies , Reproducibility of Results , Sensitivity and Specificity , Transducers
3.
Magn Reson Med ; 75(6): 2573-8, 2016 06.
Article in English | MEDLINE | ID: mdl-26192998

ABSTRACT

PURPOSE: To improve the signal transmission efficiency and sensitivity of a local detection coil that is weakly inductively coupled to a larger receive coil. METHODS: The resonant detection coil is connected in parallel with the gate of a high electron mobility transistor (HEMT) transistor without impedance matching. When the drain of the transistor is capacitively shunted to ground, current amplification occurs in the resonator by feedback that transforms a capacitive impedance on the transistor's source to a negative resistance on its gate. RESULTS: High resolution images were obtained from a mouse brain using a small, 11 mm diameter surface coil that was inductively coupled to a commercial, phased array chest coil. Although the power consumption of the amplifier was only 88 µW, 14 dB gain was obtained with excellent noise performance. CONCLUSION: An integrated current amplifier based on a HEMT can enhance the sensitivity of inductively coupled local detectors when weakly coupled. This amplifier enables efficient signal transmission between customized user coils and commercial clinical coils, without the need for a specialized signal interface. Magn Reson Med 75:2573-2578, 2016. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.


Subject(s)
Amplifiers, Electronic , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Signal Processing, Computer-Assisted/instrumentation , Animals , Equipment Design , Mice
4.
Magn Reson Med ; 74(4): 1189-97, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26190585

ABSTRACT

PURPOSE: The goal of this study was to explore the feasibility of using an array of electric dipole antennas for RF transmission in spine MRI at high fields. METHOD: A two-channel transmit array based on an electric dipole design was quantitatively optimized for 7T spine imaging and integrated with a receive array combining eight loop coils. Using B1+ mapping, the transmit efficiency of the dipole array was compared with a design using quadrature loop pairs. The radiofrequency energy deposition for each array was measured using a home-built dielectric phantom and MR thermometry. The performance of the proposed array was qualitatively demonstrated in human studies. RESULTS: The results indicate dramatically improved transmit efficiency for the dipole design compared with the loop excitation. A gain of up to 76% was achieved within the spinal region. CONCLUSION: For imaging of the spine, electric dipole-based transmitters provide an attractive alternative to the traditional loop-based design. Easy integration with existing receive array technology facilitates practical use at high fields.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Spine/anatomy & histology , Equipment Design , Humans , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...