Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
ACS Chem Neurosci ; 15(5): 994-1009, 2024 03 06.
Article in English | MEDLINE | ID: mdl-38407056

ABSTRACT

Cholinergic deficit is a characteristic factor of several pathologies, such as myasthenia gravis, some types of congenital myasthenic syndromes, and Alzheimer's Disease. Two molecular targets for its treatment are acetylcholinesterase (AChE) and nicotinic acetylcholine receptor (nAChR). In previous studies, we found that caffeine behaves as a partial nAChR agonist and confirmed that it inhibits AChE. Here, we present new bifunctional caffeine derivatives consisting of a theophylline ring connected to amino groups by different linkers. All of them were more potent AChE inhibitors than caffeine. Furthermore, although some of them also activated muscle nAChR as partial agonists, not all of them stabilized nAChR in its desensitized conformation. To understand the molecular mechanism underlying these results, we performed docking studies on AChE and nAChR. The nAChR agonist behavior of the compounds depends on their accessory group, whereas their ability to stabilize the receptor in a desensitized state depends on the interactions of the linker at the binding site. Our results show that the new compounds can inhibit AChE and activate nAChR with greater potency than caffeine and provide further information on the modulation mechanisms of pharmacological targets for the design of novel therapeutic interventions in cholinergic deficit.


Subject(s)
Caffeine , Receptors, Nicotinic , Caffeine/pharmacology , Acetylcholinesterase/metabolism , Receptors, Nicotinic/metabolism , Cholinergic Agents/pharmacology , Cholinesterase Inhibitors/pharmacology
2.
Bioorg Chem ; 143: 107008, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38091720

ABSTRACT

A series of 19 novel α-aminophosphonate-tetrahydroisoquinoline hybrids were synthesized through a cross dehydrogenative coupling reaction between N-aryl-tetrahydroisoquinolines and dialkylphosphites, using tert-butyl hydroperoxide as oxidazing agent. This simple procedure provided products with high atom economy and moderate to high yields. In vitro cholinesterase inhibitory activity of these compounds was evaluated. All the synthesized compounds showed good to excellent selective inhibition against butyrylcholinesterase. Compound 3bc was found to be the most active derivative with an IC50 of 9 nM. Molecular modelling studies suggested that the inhibitor is located in the peripheral anionic site (PAS) of the enzyme and interacts with some residue of the catalytic anionic site. Kinetic studies revealed that 3bc acts as a non-competitive inhibitor. Predicted ADME showed good pharmacokinetics and drug-likeness properties for most hybrids. Each newly synthesized compound was characterized by IR, 1H NMR, 13C NMR, 31P NMR spectral studies and also HRMS. The results of this study suggest that α-aminophosphonate-tetrahydroisoquinoline hybrids can be promising lead compounds in the discovery of new and improved drugs for the treatment of Alzheimer's disease and related neurodegenerative disorders.


Subject(s)
Alzheimer Disease , Tetrahydroisoquinolines , Humans , Cholinesterase Inhibitors/chemistry , Butyrylcholinesterase/metabolism , Kinetics , Acetylcholinesterase/metabolism , Structure-Activity Relationship , Molecular Docking Simulation , Tetrahydroisoquinolines/pharmacology , Alzheimer Disease/drug therapy
4.
Chemosphere ; 340: 139847, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37595689

ABSTRACT

To achieve a waste-free clean production, the present study aimed to valorize an underused agroindustrial byproduct (rice bran) by mealworms bioconversion and produce bio-oil from pyrolysis of insect excreta (frass) as bioinsecticide. To reach the first goal, the suitability of rice bran (RB) versus standard diet, wheat bran (WB), was examined by determining feed conversion, growth performance, and nutritional profile of T. molitor larvae. RB diet was an appropriate feed substrate for breeding mealworms, as evidenced by their high survival rates, optimal feed conversion parameters, and its capability to support the growth and life cycle of this insect. Besides, RB did not affect soluble larval protein content but modified crude fat content and fatty acid profile. In order to address the second aim, egested frass from RB and WB were subjected to pyrolysis to obtain bio-oils. The main compound was acetic acid (≈37%) followed by 1,6-anhydro-ß-d-glucopyranose (from 16 to 25%), as measured by GC-MS analysis. Nitrogen-containing chemicals accounted for ≈10%. Frass bio-oils could represent a novel source of bioinsecticides due to their bioeffectiveness in insect pests of economic importance (Plodia interpunctella and Tribolium castaneum) and medical interest (Culex pipiens pipiens). For P. interpunctella adults, frass bio-oils produced insecticidal activity by fumigant and contact exposure whereas for T. castaneum adults, just fumigant. By a miniaturized model that simulates semireal storage conditions, it was seen that, on T. castaneum, frass RB bio-oil generated higher repellent effect than frass WB. Finally, bio-oils proved to have larvicidal activity against Cx. p. pipiens.


Subject(s)
Tenebrio , Animals , Pyrolysis , Plant Oils , Dietary Fiber
5.
Pest Manag Sci ; 79(11): 4162-4171, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37319327

ABSTRACT

BACKGROUND: The development of novel and ecofriendly tools plays an important role in insect pest management. Nanoemulsions (NEs) based on essential oils (EOs) offer a safer alternative for human health and the environment. This study aimed to elaborate and evaluate the toxicological effects of NEs containing peppermint or palmarosa EOs combined with ß-cypermethrin (ß-CP) using ultrasound technique. RESULTS: The optimized ratio of active ingredients to surfactant was 1:2. The NEs containing peppermint EO combined with ß-CP (NEs peppermint/ß-CP) were polydisperse with two peaks at 12.77 nm (33.4% intensity) and 299.1 nm (66.6% intensity). However, the NEs containing palmarosa EO combined with ß-CP (NEs palmarosa/ß-CP) were monodisperse with a size of 104.5 nm. Both NEs were transparent and stable for 2 months. The insecticidal effect of NEs was evaluated against Tribolium castaneum and Sitophilus oryzae adults, as well as Culex pipiens pipiens larvae. On all these insects, NEs peppermint/ß-CP enhanced pyrethroid bioactivity from 4.22- to 16-folds while NEs palmarosa/ß-CP, from 3.90- to 10.6-folds. Moreover, both NEs maintained high insecticidal activities against all insects for 2 months, although a slight increase of the particle size was detected. CONCLUSION: The NEs elaborated in this work can be considered as highly promising formulations for the development of new insecticides. © 2023 Society of Chemical Industry.

6.
Curr Neuropharmacol ; 2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37357520

ABSTRACT

Since the development of the "cholinergic hypothesis" as an important therapeutic approach in the treatment of Alzheimer's disease (AD), the scientific community has made a remarkable effort to discover new and effective molecules with the ability to inhibit the enzyme acetylcholinesterase (AChE). The natural function of this enzyme is to catalyze the hydrolysis of the neurotransmitter acetylcholine in the brain. Thus, its inhibition increases the levels of this neurochemical and improves the cholinergic functions in patients with AD alleviating the symptoms of this neurological disorder. In recent years, attention has also been focused on the role of another enzyme, butyrylcholinesterase (BChE), mainly in the advanced stages of AD, transforming this enzyme into another target of interest in the search for new anticholinesterase agents. Over the past decades, Nature has proven to be a rich source of bioactive compounds relevant to the discovery of new molecules with potential applications in AD therapy. Bioprospecting of new cholinesterase inhibitors among natural products has led to the discovery of an important number of new AChE and BChE inhibitors that became potential lead compounds for the development of anti-AD drugs. This review summarizes a total of 260 active compounds from 142 studies which correspond to the most relevant (IC 50 ≤ 15 µM) research work published during 2012-2022 on plant-derived anticholinesterase compounds, as well as several potent inhibitors obtained from other sources like fungi, algae, and animals.

7.
CNS Neurol Disord Drug Targets ; 19(8): 630-641, 2020.
Article in English | MEDLINE | ID: mdl-32888280

ABSTRACT

BACKGROUND: Currently approved Alzheimer's disease medications mainly comprise acetylcholinesterase inhibitors. Many of these inhibitors are either natural compounds or synthetic molecules inspired in natural compounds. Hybrid molecules that can interact with different target sites of the enzyme could lead to the discovery of effective multitarget drugs. OBJECTIVE: To design, synthesize, and evaluate a series of new aza-resveratrol analogs as in vitro acetyl- and butyrylcholinesterase inhibitors. METHODS: The synthesis is achieved by a simple and efficient microwave-assisted method, from commercially available starting materials. Compounds are designed as hybrids of an aza-stilbene nucleus (Schiff base) connected to a tertiary amine by a hydrocarbon chain of variable length, designed to interact both with the peripheric anionic site and the catalytic site of the enzyme. RESULTS: All the derivatives inhibit both enzymes in a concentration-dependent manner, acting as moderate to potent cholinesterase inhibitors. The most potent inhibitors are compounds 12b (IC50 = 0.43 µM) and 12a (IC50 = 0.31 µM) for acetyl- and butyrylcholinesterase, respectively. Compounds 12a and 12b also exhibit significant acetylcholinesterase inhibition in SH-SY5Y human neuroblastoma cells without cytotoxic properties. Enzyme kinetic studies and molecular modeling reveal that inhibitor 12b targets both the catalytic active site and the peripheral anionic site of acetylcholinesterase what makes it able to modulate the self-induced ß-amyloid aggregation. Furthermore, the molecular modeling analysis helps to assess the impact of the linker length in the inhibitory activity of this family of new cholinesterase inhibitors. CONCLUSION: These compounds have the potential to serve as a dual binding site inhibitor and might provide a useful template for the development of new anti-Alzheimer's disease agents.


Subject(s)
Cholinesterase Inhibitors/chemical synthesis , Resveratrol/chemical synthesis , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Binding Sites , Butyrylcholinesterase/metabolism , Humans , Microwaves , Models, Molecular , Molecular Docking Simulation , Structure-Activity Relationship
8.
Mol Inform ; 39(11): e1900125, 2020 11.
Article in English | MEDLINE | ID: mdl-32048433

ABSTRACT

Alzheimer's dementia is a neurodegenerative disease that affects the elderly population and causes memory impairment and cognitive deficit. Manifestation of this disease is associated to acetylcholine decrease; thus, Cholinesterase inhibition is the main therapeutic strategy for the treatment of Alzheimer's disease. In the present study, a series of aporphinoid alkaloids were tested as potential acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors in vitro. Alkaloids liriodenine (3) and cassythicine (10) were the best inhibitors of both cholinesterases with IC50 values lower than 10 µM. In addition, these alkaloids demonstrated better inhibition of BChE than reference drug galantamine. In addition, some alkaloids showed selective inhibition. Laurotetatine clorhydrate (13) selectively inhibit AChE over BChE. On the contrary, pachyconfine (7) interacted more efficiently with BChE active site. Molecular modelling studies were performed in order to illustrate key interactions between most active compounds and the enzymes and to explain their selectivity. These studies reveal that the benzodioxole moiety exhibits strong interactions due to hydrogen bonds that form with the Glu201 (AChE) and Tyr440 (BChE) residues, which is reflected in the IC50 values.


Subject(s)
Alkaloids/pharmacology , Aporphines/pharmacology , Cholinesterase Inhibitors/pharmacology , Molecular Docking Simulation , Acetylcholinesterase/metabolism , Alkaloids/chemistry , Animals , Aporphines/chemistry , Butyrylcholinesterase/metabolism , Electrophorus , Galantamine/chemistry , Horses , Inhibitory Concentration 50 , Quantum Theory , Static Electricity
9.
Comput Biol Chem ; 83: 107101, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31442708

ABSTRACT

Lupane-type triterpenoids have shown a potential effect against neurodegenerative disorders. Alzheimer's disease, one of the common neurodegenerative disease, is evident by the accumulation of amyloid-beta (Aß) plaque in the extracellular regions of the brain. ß-site amyloid precursor protein cleaving enzyme 1 (BACE1) is a key enzyme for the Aß formation viathe cleavage of amyloid precursor protein (APP). Therefore, to find the potent BACE1 inhibitors and furthermore to explore the role of the functional group responsible for the strong BACE1 inhibitory activity, we synthesized a series of triterpenoids with lupane skeleton starting from the natural compounds calenduladiol and lupeol. Compound 1 revealed a potent competitive BACE1 inhibitory activity (IC50 = 16.77 ±â€¯1.16 µM; Ki = 19.38). Furthermore, the molecular docking simulation revealed the importance of Tyr198 residue along with the other hydrophobic interactions for the strong affinity of 1‒BACE1 complex. To sum up, our results demonstrated the importance of carbonyl moiety at 3 and 16 position of lupane-type triterpenoid over the hydroxyl group at the same position.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Triterpenes/pharmacology , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Humans , Kinetics , Models, Molecular , Triterpenes/chemistry
10.
Anticancer Res ; 39(7): 3835-3845, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31262911

ABSTRACT

BACKGROUND/AIM: This study examined the potential role of natural triterpenoids lupeol, calenduladiol and heliantriol B2, and a set of 19 derivatives, as antiproliferative and antimetastatic agents against prostate cancer cells. MATERIALS AND METHODS: Natural triterpenoids were isolated from Chuqiraga erinaceae. Analogs were obtained by transformations of lupeol and calenduladiol. The effects of compounds on PC-3 and LNCaP cells were determined using the MTT assay. Compounds with half-maximal inhibitory concentration <70 µM were evaluated as antimetastatic agents by a wound-healing assay. RESULTS: Lupeol-3ß-sulfate, a new semisynthetic lupane, was the most active compound. In general, sulfated derivatives displayed higher activity than the lead against both cell lines. A new analog, calenduladiol-3ß-monosulfate, inhibited the migration of PC-3 cells; heliantriol B2 and 3ß-aminolupane inhibited the migration of LNCaP cells in a concentration-dependent manner. CONCLUSION: Our study provides novel agents with cytotoxic effects on prostate cancer cells, which may represent a potential new therapeutic approach for prostate cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Prostatic Neoplasms/drug therapy , Triterpenes/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Male , Wound Healing/drug effects
11.
Bioorg Chem ; 79: 301-309, 2018 09.
Article in English | MEDLINE | ID: mdl-29793143

ABSTRACT

A set of triterpenoids with different grades of oxidation in the lupane skeleton were prepared and evaluated as cholinesterase inhibitors. Allylic oxidation with selenium oxide and Jones's oxidation were employed to obtain mono-, di- and tri-oxolupanes, starting from calenduladiol (1) and lupeol (3). All the derivatives showed a selective inhibition of butyrylcholinesterase over acetylcholinesterase (BChE vs. AChE). A kinetic study proved that compounds 2 and 9, the more potent inhibitors of the series, act as competitive inhibitors. Molecular modeling was used to understand their interaction with BChE, the role of carbonyl at C-16 and the selectivity towards this enzyme over AChE. These results indicate that oxidation at C-16 of the lupane skeleton is a key transformation in order to improve the cholinesterase inhibition of these compounds.


Subject(s)
Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Triterpenes/pharmacology , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Animals , Butyrylcholinesterase/chemistry , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Docking Simulation , Molecular Structure , Oxidation-Reduction , Structure-Activity Relationship , Torpedo , Triterpenes/chemical synthesis , Triterpenes/chemistry
12.
Neuropharmacology ; 135: 464-473, 2018 06.
Article in English | MEDLINE | ID: mdl-29614315

ABSTRACT

Cholinergic deficit is regarded as an important factor responsible for Alzheimer's disease (AD) symptoms. Acetylcholinesterase (AChE) and nicotinic receptor (AChR) are two molecular targets for the treatment of this disease. We found here that methanolic extracts of Camellia sinensis exhibited anticholinesterase activity and induced AChR conformational changes. From bioguided fractionation we confirmed that caffeine was the active compound exerting such effects. It is well-known that caffeine acts as an inhibitor of AChE and here we explored the effect of caffeine on the AChR by combining single channel recordings and fluorescent measurements. From single channel recordings we observed that caffeine activated both muscle and α7 AChRs at low concentrations, and behaved as an open channel blocker which was evident at high concentrations. Fluorescent measurements were performed with the conformational sensitive probe crystal violet (CrV) and AChR rich membranes from Torpedo californica. Caffeine induced changes in the KD value of CrV in a concentration-dependent manner taking the AChR closer to a desentisized state. In the presence of α-bungarotoxin, an AChR competitive antagonist, high concentrations of caffeine increased the KD value of CrV, compatible with a competition with CrV molecules for the luminal channel. Our electrophysiological and fluorescent experiments show that caffeine has a dual effect on nicotinic receptors, behaving as an agonist and an ion channel blocker, probably through distinct AChR sites with quite different affinities. Thus, caffeine or its derivatives can be considered for the design of promising multitarget-directed drugs for AD treatment by modulation of different targets in the cholinergic pathway.


Subject(s)
Acetylcholinesterase/metabolism , Caffeine/pharmacology , Central Nervous System Stimulants/pharmacology , Cholinergic Agents/pharmacology , Receptors, Nicotinic/metabolism , Acetylcholine/pharmacology , Animals , Camellia sinensis , HEK293 Cells , Humans , Plant Extracts/pharmacology , Plant Leaves/chemistry , Protein Conformation/drug effects , Torpedo
13.
Biol Pharm Bull ; 40(11): 1923-1928, 2017.
Article in English | MEDLINE | ID: mdl-29093339

ABSTRACT

A collection of sixteen semisynthetic 17-hydroxycativic acid esters with alcohols containing a tertiary amine group was evaluated for their in vitro cytotoxicity against two human cancer cell lines, THP-1 and U937, and for their effects on the cell cycle and cell death. While 17-hydroxycativic acid itself is not cytotoxic, all the esters displayed cytotoxic activity, with 50% growth inhibition (GI50) values ranging between 3.2 and 23.1 µM. In general, the most potent compounds in both cell lines were esters with four carbon long alcohol residues. There was no clear relationship between the identity of the terminal secondary amine and the activity of the compound. Experiments using the 6-(pyrrolidin-1-yl)pentyl ester, 2c, revealed that this compound activates caspases-3/7 and causes poly(ADP-ribose)polymerase 1 (PARP-1) fragmentation in THP-1 and U937 cells, indicating the induction of apoptotic cell death. These results suggest that further investigation into the anticancer activity of diterpene derivatives and other labdane diterpenes may be fruitful.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Cycle/drug effects , Diterpenes/pharmacology , Esters/pharmacology , Antineoplastic Agents/chemistry , Caspase 3/metabolism , Caspase 7/metabolism , Cell Line, Tumor , Diterpenes/chemistry , Esters/chemistry , Humans , Inhibitory Concentration 50 , Leukemia/drug therapy , Poly (ADP-Ribose) Polymerase-1/metabolism , Structure-Activity Relationship
14.
Bioorg Med Chem ; 22(15): 3838-49, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-25017625

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder associated with memory impairment and cognitive deficit. Most of the drugs currently available for the treatment of AD are acetylcholinesterase (AChE) inhibitors. In a preliminary study, significant AChE inhibition was observed for the ethanolic extract of Grindelia ventanensis (IC50=0.79 mg/mL). This result prompted us to isolate the active constituent, a normal labdane diterpenoid identified as 17-hydroxycativic acid (1), through a bioassay guided fractionation. Taking into account that 1 showed moderate inhibition of AChE (IC50=21.1 µM), selectivity over butyrylcholinesterase (BChE) (IC50=171.1 µM) and that it was easily obtained from the plant extract in a very good yield (0.15% w/w), we decided to prepare semisynthetic derivatives of this natural diterpenoid through simple structural modifications. A set of twenty new cativic acid derivatives (3-6) was prepared from 1 through transformations on the carboxylic group at C-15, introducing a C2-C6 linker and a tertiary amine group. They were tested for their inhibitory activity against AChE and BChE and some structure-activity relationships were outlined. The most active derivative was compound 3c, with an IC50 value of 3.2 µM for AChE. Enzyme kinetic studies and docking modeling revealed that this inhibitor targeted both the catalytic active site and the peripheral anionic site of this enzyme. Furthermore, 3c showed significant inhibition of AChE activity in SH-SY5Y human neuroblastoma cells, and was non-cytotoxic.


Subject(s)
Cholinesterase Inhibitors/chemical synthesis , Diterpenes/chemical synthesis , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Animals , Binding Sites , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Catalytic Domain , Cell Line, Tumor , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/metabolism , Crystallography, X-Ray , Diterpenes/chemistry , Diterpenes/metabolism , Grindelia/chemistry , Grindelia/metabolism , Humans , Kinetics , Molecular Conformation , Molecular Docking Simulation
15.
Bioorg Med Chem ; 22(13): 3341-50, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24835788

ABSTRACT

A set of twenty one lupane derivatives (2-22) was prepared from the natural triterpenoid calenduladiol (1) by transformations on the hydroxyl groups at C-3 and C-16, and also on the isopropenyl moiety. The derivatives were tested for their inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) and some structure-activity relationships were outlined with the aid of enzyme kinetic studies and docking modelization. The most active compound resulted to be 3,16,30-trioxolup-20(29)-ene (22), with an IC50 value of 21.5µM for butyrylcholinesterase, which revealed a selective inhibitor profile towards this enzyme.


Subject(s)
Acetylcholinesterase/metabolism , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Triterpenes/pharmacology , Animals , Butyrylcholinesterase/blood , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Dose-Response Relationship, Drug , Eels , Horses , Kinetics , Models, Molecular , Molecular Conformation , Structure-Activity Relationship , Triterpenes/chemical synthesis , Triterpenes/chemistry
16.
Curr Neuropharmacol ; 11(4): 388-413, 2013 Jul.
Article in English | MEDLINE | ID: mdl-24381530

ABSTRACT

As acetylcholinesterase (AChE) inhibitors are an important therapeutic strategy in Alzheimer's disease, efforts are being made in search of new molecules with anti-AChE activity. The fact that naturally-occurring compounds from plants are considered to be a potential source of new inhibitors has led to the discovery of an important number of secondary metabolites and plant extracts with the ability of inhibiting the enzyme AChE, which, according to the cholinergic hypothesis, increases the levels of the neurotransmitter acetylcholine in the brain, thus improving cholinergic functions in patients with Alzheimer's disease and alleviating the symptoms of this neurological disorder. This review summarizes a total of 128 studies which correspond to the most relevant research work published during 2006-2012 (1st semester) on plant-derived compounds, plant extracts and essential oils found to elicit AChE inhibition.

17.
Planta Med ; 76(6): 607-10, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19918718

ABSTRACT

A bioactivity-guided approach was taken to identify the acetylcholinesterase (AChE) inhibitory agents in the ethanolic extract of Chuquiraga erinacea D. Don. subsp. erinacea leaves using a bioautographic method. This permitted the isolation of the pentacyclic triterpenes calenduladiol (1), faradiol (2), heliantriol B2 (3), lupeol (4), and a mixture of alpha-and beta-amyrin ( 5A and 5B) as active constituents. Pseudotaraxasterol (6) and taraxasterol (7) were also isolated from this extract and showed no activity at the same analytical conditions. Compound 1 showed the highest AChE inhibitory activity with 31.2 % of inhibition at 0.5 mM. Looking forward to improve the water solubility of the active compounds, the sodium sulfate ester of 1 was prepared by reaction with the (CH3)3N.SO3 complex. The semisynthetic derivative disodium calenduladiol disulfate (8) elicited higher AChE inhibition than 1 with 94.1 % of inhibition at 0.5 mM (IC (50) = 0.190 +/- 0.003 mM). Compounds 1, 2, 3, 5, 6, and 7 are reported here for the first time in C. erinacea. This is the first report of AChE inhibition from calenduladiol (1) as well as from a sulfate derived from a natural product.


Subject(s)
Asteraceae/chemistry , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Triterpenes/chemistry , Triterpenes/pharmacology , Molecular Structure
18.
Nat Prod Res ; 22(3): 253-7, 2008 Feb 15.
Article in English | MEDLINE | ID: mdl-18266156

ABSTRACT

The volatile fraction from aerial parts (flowers, stems and leaves) of Discaria americana Gillies & Hook (Rhamnaceae) was obtained by hydrodistillation and the chemical composition of this oil was determined by gas chromatography and gas chromatography-mass spectrometry. The major constituents resulted to be 4-methylphenol (15.5%), eugenol (11%), 3-methylindole (9.7%) and alpha-terpineol (6.2%). The essential oil of this plant displayed strong antioxidant activity (DPPH assay) that could be explained by the presence of active compounds like eugenol, 4-methylphenol, alpha-terpineol, linalool, thymol and cis-nerolidol.


Subject(s)
Rhamnaceae/chemistry , Antioxidants/analysis , Antioxidants/chemistry , Plant Components, Aerial/chemistry , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...