Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Front Plant Sci ; 13: 909073, 2022.
Article in English | MEDLINE | ID: mdl-35845697

ABSTRACT

Herbicides are commonly deployed as the front-line treatment to control infestations of weeds in native ecosystems and among crop plants in agriculture. However, the prevalence of herbicide resistance in many species is a major global challenge. The specificity and effectiveness of herbicides acting on diverse weed species are tightly linked to targeted proteins. The conservation and variance at these sites among different weed species remain largely unexplored. Using novel genome data in a genome-guided approach, 12 common herbicide-target genes and their coded proteins were identified from seven species of Weeds of National Significance in Australia: Alternanthera philoxeroides (alligator weed), Lycium ferocissimum (African boxthorn), Senecio madagascariensis (fireweed), Lantana camara (lantana), Parthenium hysterophorus (parthenium), Cryptostegia grandiflora (rubber vine), and Eichhornia crassipes (water hyacinth). Gene and protein sequences targeted by the acetolactate synthase (ALS) inhibitors and glyphosate were recovered. Compared to structurally resolved homologous proteins as reference, high sequence conservation was observed at the herbicide-target sites in the ALS (target for ALS inhibitors), and in 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase (target for glyphosate). Although the sequences are largely conserved in the seven phylogenetically diverse species, mutations observed in the ALS proteins of fireweed and parthenium suggest resistance of these weeds to ALS-inhibiting and other herbicides. These protein sites remain as attractive targets for the development of novel inhibitors and herbicides. This notion is reinforced by the results from the phylogenetic analysis of the 12 proteins, which reveal a largely consistent vertical inheritance in their evolutionary histories. These results demonstrate the utility of high-throughput genome sequencing to rapidly identify and characterize gene targets by computational methods, bypassing the experimental characterization of individual genes. Data generated from this study provide a useful reference for future investigations in herbicide discovery and development.

2.
Chemistry ; 25(11): 2729-2734, 2019 Feb 21.
Article in English | MEDLINE | ID: mdl-30681236

ABSTRACT

Cubane was recently validated as a phenyl ring (bio)isostere, but highly strained caged carbocyclic systems lack π character, which is often critical for mediating key biological interactions. This electronic property restriction associated with cubane has been addressed herein with cyclooctatetraene (COT), using known pharmaceutical and agrochemical compounds as templates. COT either outperformed or matched cubane in multiple cases suggesting that versatile complementarity exists between the two systems for enhanced bioactive molecule discovery.

4.
Angew Chem Int Ed Engl ; 55(11): 3580-5, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-26846616

ABSTRACT

Pharmaceutical and agrochemical discovery programs are under considerable pressure to meet increasing global demand and thus require constant innovation. Classical hydrocarbon scaffolds have long assisted in bringing new molecules to the market place, but an obvious omission is that of the Platonic solid cubane. Eaton, however, suggested that this molecule has the potential to act as a benzene bioisostere. Herein, we report the validation of Eaton's hypothesis with cubane derivatives of five molecules that are used clinically or as agrochemicals. Two cubane analogues showed increased bioactivity compared to their benzene counterparts whereas two further analogues displayed equal bioactivity, and the fifth one demonstrated only partial efficacy. Ramifications from this study are best realized by reflecting on the number of bioactive molecules that contain a benzene ring. Substitution with the cubane scaffold where possible could revitalize these systems, and thus expedite much needed lead candidate identification.


Subject(s)
Benzene/chemistry , Aged , Animals , Humans , Mice , Mice, Inbred NOD , Mice, SCID
SELECTION OF CITATIONS
SEARCH DETAIL
...