Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 66(6): 3876-3895, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36882080

ABSTRACT

Small-molecule mitochondrial uncouplers are gaining recognition as potential therapeutics for metabolic diseases such as obesity, diabetes, and nonalcoholic steatohepatitis (NASH). Specifically, heterocycles derived from BAM15, a potent and mitochondria-selective uncoupler, have yielded promising preclinical candidates that are efficacious in animal models of obesity and NASH. In this study, we report the structure-activity relationship studies of 6-amino-[1,2,5]oxadiazolo[3,4-b]pyridin-5-ol derivatives. Using oxygen consumption rate as a readout of mitochondrial uncoupling, we established 5-hydroxyoxadiazolopyridines as mild uncouplers. In particular, SHM115, which contains a pentafluoro aniline, had an EC50 value of 17 µM and exhibited 75% oral bioavailability. SHM115 treatment increased the energy expenditure and lowered the body fat mass in two diet-induced obesity mouse models, including an obesity prevention model and an obesity reversal model. Taken together, our findings demonstrate the therapeutic potential of mild mitochondrial uncouplers for the prevention of diet-induced obesity.


Subject(s)
Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/prevention & control , Mitochondria/metabolism , Obesity/drug therapy , Obesity/metabolism , Diet , Oxygen Consumption
2.
J Med Chem ; 63(11): 6203-6224, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32392051

ABSTRACT

Small molecule mitochondrial uncouplers have recently garnered great interest for their potential in treating nonalcoholic steatohepatitis (NASH). In this study, we report the structure-activity relationship profiling of a 6-amino[1,2,5]oxadiazolo[3,4-b]pyrazin-5-ol core, which utilizes the hydroxy moiety as the proton transporter across the mitochondrial inner membrane. We demonstrate that a wide array of substituents is tolerated with this novel scaffold that increased cellular metabolic rates in vitro using changes in oxygen consumption rate as a readout. In particular, compound SHS4121705 (12i) displayed an EC50 of 4.3 µM in L6 myoblast cells and excellent oral bioavailability and liver exposure in mice. In the STAM mouse model of NASH, administration of 12i at 25 mg kg-1 day-1 lowered liver triglyceride levels and improved liver markers such as alanine aminotransferase, NAFLD activity score, and fibrosis. Importantly, no changes in body temperature or food intake were observed. As potential treatment of NASH, mitochondrial uncouplers show promise for future development.


Subject(s)
Pyrazines/chemistry , Alanine Transaminase/metabolism , Aniline Compounds/chemistry , Animals , Cell Line , Diet, High-Fat , Disease Models, Animal , Half-Life , Liver/drug effects , Liver/metabolism , Mice , Mitochondria/metabolism , Myoblasts/cytology , Myoblasts/drug effects , Myoblasts/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/pathology , Oxygen Consumption/drug effects , Pyrazines/pharmacokinetics , Pyrazines/pharmacology , Pyrazines/therapeutic use , Rats , Structure-Activity Relationship , Triglycerides/metabolism , Uncoupling Protein 1/chemistry , Uncoupling Protein 1/metabolism
3.
Bioorg Med Chem Lett ; 30(8): 127057, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32113842

ABSTRACT

Mitochondrial protonophores transport protons through the mitochondrial inner membrane into the matrix to uncouple nutrient oxidation from ATP production thereby decreasing the proton motive force. Mitochondrial uncouplers have beneficial effects of decrease reactive oxygen species generation and have the potential for treating diseases such as obesity, neurodegenerative diseases, non-alcoholic fatty liver disease (NAFLD), diabetes, and many others. In this study, we report the structure-activity relationship profile of the pyrazine scaffold bearing substituted aniline rings. Our work indicates that a trifluoromethyl group is best at the para position while the trifluoromethoxy group is preferred in the meta position of the aniline rings of 2,3-substituted pyrazines. As proton transport and cycling requires the formation of a negative charge that has to traverse the mitochondrial membrane, a stabilizing internal hydrogen bond is a key feature for efficient mitochondrial uncoupling activity.


Subject(s)
Aniline Compounds/pharmacology , Mitochondria/drug effects , Pyrazines/pharmacology , Uncoupling Agents/pharmacology , Aniline Compounds/chemistry , Dose-Response Relationship, Drug , Molecular Structure , Pyrazines/chemistry , Reactive Oxygen Species/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Structure-Activity Relationship , Uncoupling Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...