Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 18: 1368667, 2024.
Article in English | MEDLINE | ID: mdl-38449731

ABSTRACT

Gulf War Illness (GWI) is a multi-symptom disorder that manifests with fatigue, sleep disturbances, mood-cognition pathologies, and musculoskeletal symptoms. GWI affects at least 25% of the military personnel that served in Operations Desert Shield and Desert Storm from 1990 to 1991. We modeled Gulf War toxicant exposure in C57BL/6J mice by combined exposure to pyridostigmine bromide (an anti-sarin drug), chlorpyrifos (an organophosphate insecticide), and DEET (an insect repellent) for 10 days followed by oral treatment with Withania somnifera root extract for 21 days beginning at 12 weeks post-exposure. W. somnifera, commonly referred to as ashwagandha, has been used in traditional Ayurvedic medicine for centuries to improve memory and reduce inflammation, and its roots contain bioactive molecules which share functional groups with modern pain, cancer, and anti-inflammatory drugs. Previously, we observed that GWI mice displayed chronic reductions in dendritic arbor and loss of spines in granule cells of the dentate gyrus of the hippocampus at 14 weeks post-exposure. Here, we examined the effects of treatment with W. somnifera root extract on chronic dendrite and spine morphology in dentate granule cells of the mouse hippocampus following Gulf War toxicant exposure. GWI mice showed approximately 25% decreases in dendritic length (p < 0.0001) and overall dendritic spine density with significant reductions in thin and mushroom spines. GWI mice treated with the Ayurvedic W. somnifera extract exhibited dendritic lengths and spine densities near normal levels. These findings demonstrate the efficacy of the Ayurvedic treatment for neuroprotection following these toxic exposures. We hope that the extract and the neuronal processes influenced will open new avenues of research regarding treatment of Gulf War Illness and neurodegenerative disorders.

2.
J Neurotrauma ; 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38269433

ABSTRACT

Blast-induced traumatic brain injury is typically regarded as a signature medical concern for military personnel who are exposed to explosive devices in active combat zones. However, soldiers as well as law enforcement personnel may be repeatedly exposed to low-level blasts during training sessions with heavy weaponries as part of combat readiness. Service personnel who sustain neurotrauma from repeated low-level blast (rLLB) exposure do not display overt pathological symptoms immediately but rather develop mild symptoms including cognitive impairments, attention deficits, mood changes, irritability, and sleep disturbances over time. Recently, we developed a rat model of rLLB by applying controlled low-level blast pressures (≤ 70 kPa) repeated five times successively to mimic the pressures experienced by service members. Using this model, we assessed anxiety-like symptoms, motor coordination, and short-term memory as a function of time. We also investigated the role of the NLRP3 inflammasome, a complex involved in chronic microglial activation and pro-inflammatory cytokine interleukin (IL)-1ß release, in rLLB-induced neuroinflammation. NLRP3 and caspase-1 protein expression, microglial activation, and IL-1ß release were examined as factors likely contributing to these neurobehavioral changes. Animals exposed to rLLB displayed acute and chronic short-term memory impairments and chronic anxiety-like symptoms accompanied by increased microglial activation, NLRP3 expression, and IL-1ß release. Treatment with MCC950, an NLRP3 inflammasome complex inhibitor, suppressed microglial activation, reduced NLRP3 expression and IL-1ß release, and improved short-term memory deficits after rLLB exposure. Collectively, this study demonstrates that rLLB induces chronic neurobehavioral and neuropathological changes by increasing NLRP3 inflammasome protein expression followed by cytokine IL-1ß release.

3.
Brain Res ; 1823: 148682, 2024 01 15.
Article in English | MEDLINE | ID: mdl-37989436

ABSTRACT

Gulf War Illness (GWI) is a chronic multi-symptom disorder affecting approximately 30 % of Veterans deployed to the Persian Gulf from 1990 to 91. GWI encompasses a wide spectrum of symptoms which frequently include neurological problems such as learning and memory impairments, mood disorders, and an increased incidence of neurodegenerative disorders. Combined exposure to both reversible and irreversible acetylcholinesterase (AChE) inhibitors has been identified as a likely risk factor for GWI. It is possible that the exposures affected connectivity in the brain, and it was also unknown whether this could benefit from treatment. We assessed chronic changes in dendritic architecture in granule cells of the dentate gyrus following exposure to pyridostigmine bromide (PB, 0.7 mg/kg), chlorpyrifos (CPF, 12.5 mg/kg), and N,N-diethyl-m-toluamide (DEET, 7.5 mg/kg) in male C57Bl/6J mice. We also evaluated the therapeutic effects of dietary administration for eight weeks of 1 % tert-butylhydroquinone (tBHQ), a Nrf2 activator, on long-term neuronal morphology. We found that Gulf War toxicant exposure resulted in reduced dendritic length and branching as well as overall spine density in dentate granule cells at 14 weeks post-exposure and that these effects were ameliorated by treatment with tBHQ. These findings indicate that Gulf War toxicant exposure results in chronic changes to dentate granule cell morphology and that modulation of neuroprotective transcription factors such as Nrf2 may improve long-term neuronal health in the hippocampus.


Subject(s)
NF-E2-Related Factor 2 , Persian Gulf Syndrome , Mice , Animals , Male , Acetylcholinesterase , Gulf War , Persian Gulf Syndrome/drug therapy , Persian Gulf Syndrome/chemically induced , Cholinesterase Inhibitors/pharmacology , Brain , Disease Models, Animal
4.
Biomedicines ; 11(5)2023 May 19.
Article in English | MEDLINE | ID: mdl-37239152

ABSTRACT

Traumatic brain injury (TBI) is considered the most common neurological disorder among people under the age of 50. In modern combat zones, a combination of TBI and organophosphates (OP) can cause both fatal and long-term effects on the brain. We utilized a mouse closed-head TBI model induced by a weight drop device, along with OP exposure to paraoxon. Spatial and visual memory as well as neuron loss and reactive astrocytosis were measured 30 days after exposure to mild TBI (mTBI) and/or paraoxon. Molecular and cellular changes were assessed in the temporal cortex and hippocampus. Cognitive and behavioral deficits were most pronounced in animals that received a combination of paraoxon exposure and mTBI, suggesting an additive effect of the insults. Neuron survival was reduced in proximity to the injury site after exposure to paraoxon with or without mTBI, whereas in the dentate gyrus hilus, cell survival was only reduced in mice exposed to paraoxon prior to sustaining a mTBI. Neuroinflammation was increased in the dentate gyrus in all groups exposed to mTBI and/or to paraoxon. Astrocyte morphology was significantly changed in mice exposed to paraoxon prior to sustaining an mTBI. These results provide further support for assumptions concerning the effects of OP exposure following the Gulf War. This study reveals additional insights into the potentially additive effects of OP exposure and mTBI, which may result in more severe brain damage on the modern battlefield.

5.
Acta Neuropathol Commun ; 10(1): 170, 2022 11 26.
Article in English | MEDLINE | ID: mdl-36435806

ABSTRACT

Population studies have shown that traumatic brain injury (TBI) is associated with an increased risk for Parkinson's disease (PD) and among U.S. Veterans with a history of TBI this risk is 56% higher. The most common type of TBI is mild (mTBI) and often occurs repeatedly among athletes, military personnel, and victims of domestic violence. PD is classically characterized by deficits in fine motor movement control resulting from progressive neurodegeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) midbrain region. This neurodegeneration is preceded by the predictable spread of characteristic alpha synuclein (αSyn) protein inclusions. Whether repetitive mTBI (r-mTBI) can nucleate PD pathology or accelerate prodromal PD pathology remains unknown. To answer this question, an injury device was constructed to deliver a surgery-free r-mTBI to rats and human-like PD pathology was induced by intracranial injection of recombinant αSyn preformed fibrils. At the 3-month endpoint, the r-mTBI caused encephalomalacia throughout the brain reminiscent of neuroimaging findings in patients with a history of mTBI, accompanied by astrocyte expansion and microglial activation. The pathology associated most closely with PD, which includes dopaminergic neurodegeneration in the SNpc and Lewy body-like αSyn inclusion burden in the surviving neurons, was not produced de novo by r-mTBI nor was the fibril induced preexisting pathology accelerated. r-mTBI did however cause aggregation of phosphorylated Tau (pTau) protein in nigra of rats with and without preexisting PD-like pathology. pTau aggregation was also found to colocalize with PFF induced αSyn pathology without r-mTBI. These findings suggest that r-mTBI induced pTau aggregate deposition in dopaminergic neurons may create an environment conducive to αSyn pathology nucleation and may add to preexisting proteinaceous aggregate burden.


Subject(s)
Brain Concussion , Brain Injuries, Traumatic , Parkinson Disease , Synucleinopathies , Humans , Animals , Rats , Substantia Nigra , Cytoskeleton
6.
Cell Mol Neurobiol ; 42(5): 1453-1463, 2022 Jul.
Article in English | MEDLINE | ID: mdl-33417143

ABSTRACT

Mild traumatic brain injuries can have long-term consequences that interfere with the life of the patient and impose a burden on our health care system. Oxidative stress has been identified as a contributing factor for the progression of neurodegeneration following TBI. A major source of oxidative stress for many veterans is cigarette smoking and second-hand smoke, which has been shown to have an effect on TBI recovery. To examine the potential influences of second-hand smoke during recovery from TBI, we utilized a mouse model of closed head injury, followed by repeated exposure to cigarette smoke and treatment with a neuroprotective antioxidant. We found that neither the mild injuries nor the smoke exposure produced axonal damage detectable with amino cupric silver staining. However, complexity in the dendritic arbors was significantly reduced after mild TBI plus smoke exposure. In the hippocampus, there were astrocytic responses, including Cyp2e1 upregulation, after the injury and tobacco smoke insult. This study provides useful context for the importance of lifestyle changes, such as reducing or eliminating cigarette smoking, during recovery from TBI.


Subject(s)
Brain Concussion , Brain Injuries, Traumatic , Tobacco Smoke Pollution , Animals , Astrocytes , Hippocampus , Humans , Mice
7.
J Biochem Mol Toxicol ; 35(12): e22913, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34528356

ABSTRACT

Gulf War Illness (GWI) is defined by the Centers for Disease Control and Prevention (CDC) as a multi-symptom illness having at least one symptom from two of three factors, which include: fatigue, mood-cognition problems, and musculoskeletal disorders. The cluster of long-term symptoms is unique to military personnel from coalition countries including United States, Australia, and the United Kingdom that served in Operation Desert Storm from 1990 to 1991. Reporting of these symptoms is much lower among soldiers deployed in other parts of the world like Bosnia during the same time period. The exact cause of GWI is unknown, but combined exposure to N,N-diethyl-m-toluamide (DEET), organophosphates like chlorpyrifos (CPF), and pyridostigmine bromide (PB), has been hypothesized as a potential mechanism. Mitochondrial dysfunction is known to occur in most neurodegenerative diseases that share symptoms with GWI and has therefore been implicated in GWI. Although exposure to these and other toxicants continues to be investigated as potential causes of GWI, their combined impact on mitochondrial physiology remains unknown. In this study, the effects of combined GWI toxicant exposure on mitochondrial function were determined in a commonly used and readily available immortalized cell line (N2a), whose higher rate of oxygen consumption resembles that of highly metabolic neurons in vivo. We report that combined exposure containing pesticide CPF 71 µM, insect repellants DEET 78 µM, and antitoxins PB 19 µM, causes profound mitochondrial dysfunction after a 4-h incubation resulting in decreased mitochondrial respiratory states in the absence of proapoptotic signaling, proton leak, or significant increase in reactive oxygen species production.


Subject(s)
Chlorpyrifos/toxicity , DEET/toxicity , Mitochondria/drug effects , Neuroblastoma/pathology , Persian Gulf Syndrome , Pyridostigmine Bromide/toxicity , War Exposure , Adenosine Triphosphate/biosynthesis , Animals , Apoptosis/drug effects , Cell Line, Tumor , Humans , Mice , Mitochondria/metabolism , Oxygen Consumption/drug effects , Protein Kinases/metabolism , Signal Transduction/drug effects
8.
Life Sci ; 284: 119845, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34293396

ABSTRACT

AIMS: Approximately 30% of the nearly 700,000 Veterans who were deployed to the Gulf War from 1990 to 1991 have reported experiencing a variety of symptoms including difficulties with learning and memory, depression and anxiety, and increased incidence of neurodegenerative diseases. Combined toxicant exposure to acetylcholinesterase (AChE) inhibitors has been studied extensively as a likely risk factor. In this study, we modeled Gulf War exposure in male C57Bl/6J mice with simultaneous administration of three chemicals implicated as exposure hazards for Gulf War Veterans: pyridostigmine bromide, the anti-sarin prophylactic; chlorpyrifos, an organophosphate insecticide; and the repellant N,N-diethyl-m-toluamide (DEET). MAIN METHODS: Following two weeks of daily exposure, we examined changes in gene expression by whole transcriptome sequencing (RNA-Seq) with hippocampal isolates. Hippocampal-associated spatial memory was assessed with a Y-maze task. We hypothesized that genes important for neuronal health become dysregulated by toxicant-induced damage and that these detrimental inflammatory gene expression profiles could lead to chronic neurodegeneration. KEY FINDINGS: We found dysregulation of genes indicating a pro-inflammatory response and downregulation of genes associated with neuronal health and several important immediate early genes (IEGs), including Arc and Egr1, which were both reduced approximately 1.5-fold. Mice exposed to PB + CPF + DEET displayed a 1.6-fold reduction in preference for the novel arm, indicating impaired spatial memory. SIGNIFICANCE: Differentially expressed genes observed at an acute timepoint may provide insight into the pathophysiology of Gulf War Illness and further explanations for chronic neurodegeneration after toxicant exposure.


Subject(s)
Gene Expression Regulation , Gulf War , Hippocampus/metabolism , Animals , Down-Regulation/drug effects , Down-Regulation/genetics , Environmental Pollutants/toxicity , Gene Expression Profiling , Gene Expression Regulation/drug effects , Gene Ontology , Hippocampus/drug effects , Male , Maze Learning , Mice, Inbred C57BL , Spatial Memory/drug effects , Up-Regulation/drug effects , Up-Regulation/genetics
9.
Waste Manag ; 46: 352-61, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26323204

ABSTRACT

Twelve instrument bundles were placed within two waste profiles as waste was placed in an operating landfill in Ste. Sophie, Quebec, Canada. The settlement data were simulated using a three-component model to account for primary or instantaneous compression, secondary compression or mechanical creep and biodegradation induced settlement. The regressed model parameters from the first waste layer were able to predict the settlement of the remaining four waste layers with good agreement. The model parameters were compared to values published in the literature. A MSW landfill scenario referenced in the literature was used to illustrate how the parameter values from the different studies predicted settlement. The parameters determined in this study and other studies with total waste heights between 15 and 60 m provided similar estimates of total settlement in the long term while the settlement rates and relative magnitudes of the three components varied. The parameters determined based on studies with total waste heights less than 15m resulted in larger secondary compression indices and lower biodegradation induced settlements. When these were applied to a MSW landfill scenario with a total waste height of 30 m, the settlement was overestimated and provided unrealistic values. This study concludes that more field studies are needed to measure waste settlement during the filling stage of landfill operations and more field data are needed to assess different settlement models and their respective parameters.


Subject(s)
Cold Temperature , Computer Simulation , Refuse Disposal , Waste Disposal Facilities , Biodegradation, Environmental , Models, Theoretical , Pressure , Quebec
SELECTION OF CITATIONS
SEARCH DETAIL
...