Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Commun ; 12(1): 504, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33495460

ABSTRACT

Cerebral cavernous malformations (CCMs) are vascular abnormalities that primarily occur in adulthood and cause cerebral hemorrhage, stroke, and seizures. CCMs are thought to be initiated by endothelial cell (EC) loss of any one of the three Ccm genes: CCM1 (KRIT1), CCM2 (OSM), or CCM3 (PDCD10). Here we report that mice with a brain EC-specific deletion of Pdcd10 (Pdcd10BECKO) survive up to 6-12 months and develop bona fide CCM lesions in all regions of brain, allowing us to visualize the vascular dynamics of CCM lesions using transcranial two-photon microscopy. This approach reveals that CCMs initiate from protrusion at the level of capillary and post-capillary venules with gradual dissociation of pericytes. Microvascular beds in lesions are hyper-permeable, and these disorganized structures present endomucin-positive ECs and α-smooth muscle actin-positive pericytes. Caveolae in the endothelium of Pdcd10BECKO lesions are drastically increased, enhancing Tie2 signaling in Ccm3-deficient ECs. Moreover, genetic deletion of caveolin-1 or pharmacological blockade of Tie2 signaling effectively normalizes microvascular structure and barrier function with attenuated EC-pericyte disassociation and CCM lesion formation in Pdcd10BECKO mice. Our study establishes a chronic CCM model and uncovers a mechanism by which CCM3 mutation-induced caveolae-Tie2 signaling contributes to CCM pathogenesis.


Subject(s)
Apoptosis Regulatory Proteins/deficiency , Brain/metabolism , Caveolae/metabolism , Disease Models, Animal , Endothelial Cells/metabolism , Hemangioma, Cavernous, Central Nervous System/metabolism , Receptor, TIE-2/metabolism , Animals , Apoptosis Regulatory Proteins/genetics , Brain/pathology , Brain/ultrastructure , Caveolae/ultrastructure , Cells, Cultured , Hemangioma, Cavernous, Central Nervous System/genetics , Humans , Mice, Knockout , Mice, Transgenic , Microscopy, Electron, Transmission , Pericytes/metabolism , Receptor, TIE-2/genetics , Signal Transduction , Survival Analysis
2.
Nat Protoc ; 16(1): 472-496, 2021 01.
Article in English | MEDLINE | ID: mdl-33299155

ABSTRACT

Mural cells (smooth muscle cells and pericytes) are integral components of brain blood vessels that play important roles in vascular formation, blood-brain barrier maintenance, and regulation of regional cerebral blood flow (rCBF). These cells are implicated in conditions ranging from developmental vascular disorders to age-related neurodegenerative diseases. Here we present complementary tools for cell labeling with transgenic mice and organic dyes that allow high-resolution intravital imaging of the different mural cell subtypes. We also provide detailed methodologies for imaging of spontaneous and neural activity-evoked calcium transients in mural cells. In addition, we describe strategies for single- and two-photon optogenetics that allow manipulation of the activity of individual and small clusters of mural cells. Together with measurements of diameter and flow in individual brain microvessels, calcium imaging and optogenetics allow the investigation of pericyte and smooth muscle cell physiology and their role in regulating rCBF. We also demonstrate the utility of these tools to investigate mural cells in the context of Alzheimer's disease and cerebral ischemia mouse models. Thus, these methods can be used to reveal the functional and structural heterogeneity of mural cells in vivo, and allow detailed cellular studies of the normal function and pathophysiology of mural cells in a variety of disease models. The implementation of this protocol can take from several hours to days depending on the intended applications.


Subject(s)
Brain/blood supply , Myocytes, Smooth Muscle/cytology , Optogenetics/methods , Pericytes/cytology , Animals , Blood Circulation , Female , Male , Mice, Transgenic , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/ultrastructure , Optical Imaging/methods , Pericytes/metabolism , Pericytes/ultrastructure
3.
Brain Behav Immun ; 75: 48-59, 2019 01.
Article in English | MEDLINE | ID: mdl-30218784

ABSTRACT

Maternal immune activation (mIA) in rodents is rapidly emerging as a key model for neurodevelopmental disorders such as autism spectrum disorder (ASD) and schizophrenia. Here, we optimise a mIA model in rats, aiming to address certain limitations of current work in this field. Specifically, the lack of clear evidence for methodology chosen, identification of successful induction of mIA in the dams and investigation of male offspring only. We focus on gestational and early juvenile changes in offspring following mIA, as detailed information on these critical early developmental time points is sparse. Following strain (Wistar, Lister Hooded, Sprague Dawley) comparison and selection, and polyriboinosinic-polyribocytidylic acid (poly I:C) dose selection (2.5-15 mg/kg single or once daily for 5 days), mIA was induced in pregnant Wistar rats with 10 mg/kg poly I:C i.p. on gestational day (GD) 15. Early morphometric analysis was conducted in male and female offspring at GD21 and postnatal day (PD) 21, eight dams for each treatment at each time point were used, 32 in total. Subsequent microglia analysis was conducted at PD21 in a small group of offspring. Poly I:C at 10 mg/kg i.p. induced a robust, but variable, plasma IL-6 response 3 h post-injection and reduced body weight at 6 h and 24 h post-injection in two separate cohorts of Wistar rats at GD15. Plasma IL-6 was not elevated at PD21 in offspring or dams. Poly I:C-induced mIA did not affect litter numbers, but resulted in PD21 pup, and GD21 placenta growth restriction. Poly I:C significantly increased microglial activation at PD21 in male hippocampi. We have identified 10 mg/kg poly I:C i.p on GD15 as a robust experimental approach for inducing mIA in Wistar rats and used this to identify early neurodevelopmental changes. This work provides a framework to study the developmental trajectory of disease-relevant, sex-specific phenotypic changes in rats.


Subject(s)
Immunity, Active/physiology , Lymphocyte Activation/immunology , Prenatal Exposure Delayed Effects/immunology , Animals , Behavior, Animal/physiology , Cytokines/immunology , Disease Models, Animal , Female , Hippocampus/drug effects , Immunity, Active/immunology , Interleukin-6/metabolism , Lymphocyte Activation/physiology , Male , Models, Animal , Motor Activity/drug effects , Neurodevelopmental Disorders , Placenta/metabolism , Poly I-C/pharmacology , Pregnancy , Rats , Rats, Wistar , Schizophrenia/immunology , T-Lymphocytes/immunology
4.
Nat Neurosci ; 20(7): 1023-1032, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28504673

ABSTRACT

Pericytes and smooth muscle cells are integral components of the brain microvasculature. However, no techniques exist to unambiguously identify these cell types, greatly limiting their investigation in vivo. Here we show that the fluorescent Nissl dye NeuroTrace 500/525 labels brain pericytes with specificity, allowing high-resolution optical imaging in the live mouse. We demonstrate that capillary pericytes are a population of mural cells with distinct morphological, molecular and functional features that do not overlap with precapillary or arteriolar smooth muscle actin-expressing cells. The remarkable specificity for dye uptake suggests that pericytes have molecular transport mechanisms not present in other brain cells. We demonstrate feasibility of longitudinal pericyte imaging during microvascular development and aging and in models of brain ischemia and Alzheimer's disease. The ability to easily label pericytes in any mouse model opens the possibility of a broad range of investigations of mural cells in vascular development, neurovascular coupling and neuropathology.


Subject(s)
Histological Techniques/methods , Optical Imaging/methods , Pericytes/cytology , Aging/metabolism , Alzheimer Disease/metabolism , Animals , Brain/blood supply , Brain Ischemia/metabolism , Female , Fluorescent Dyes/metabolism , Male , Mice , Mice, Transgenic , Myocytes, Smooth Muscle/cytology , Pericytes/metabolism , Pericytes/ultrastructure
5.
Brain Behav Immun ; 61: 117-126, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27856349

ABSTRACT

Neuroprotective strategies for ischemic stroke have failed to translate from bench to bedside, possibly due to the lack of consideration of key clinical co-morbidities. Stroke and co-morbidities are associated with raised levels of the pro-inflammatory cytokine interleukin-1 (IL-1). Inhibition of IL-1 by the administration of interleukin-1 receptor antagonist (IL-1Ra) has shown to be neuroprotective after experimental cerebral ischemia. Stroke can also trigger a robust neuroreparative response following injury, yet many of these new born neurons fail to survive or integrate into pre-existing circuits. Thus, we explore here effects of IL-1Ra on post-stroke neurogenesis in young and aged/co-morbid rats. Aged lean, aged Corpulent (a model of atherosclerosis, obesity and insulin resistance) and young Wistar male rats were exposed to transient cerebral ischemia, received subcutaneous IL-1Ra 3 and 6h during reperfusion, and effects on stroke outcome and neurogenesis were analyzed. Our results show that administration of IL-1Ra improves stroke outcome in both young and aged/co-morbid rats. Furthermore, IL-1Ra not only increases stem cell proliferation, but also significantly enhances neuroblast migration and the number of newly born neurons after cerebral ischemia. Overall, our data demonstrate that systemic administration of IL-1Ra improves outcome and promotes neurogenesis after experimental stroke, further highlighting the therapeutic potential of this clinically approved drug.


Subject(s)
Brain Ischemia/drug therapy , Brain/drug effects , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Neurogenesis/drug effects , Neuroprotective Agents/therapeutic use , Stroke/drug therapy , Animals , Cell Movement/drug effects , Interleukin 1 Receptor Antagonist Protein/pharmacology , Male , Neurons/drug effects , Neuroprotective Agents/pharmacology , Rats , Rats, Wistar , Time Factors
6.
Front Cell Neurosci ; 9: 18, 2015.
Article in English | MEDLINE | ID: mdl-25705177

ABSTRACT

Inflammation is the key host-defense response to infection and injury, yet also a major contributor to a diverse range of diseases, both peripheral and central in origin. Brain injury as a result of stroke or trauma is a leading cause of death and disability worldwide, yet there are no effective treatments, resulting in enormous social and economic costs. Increasing evidence, both preclinical and clinical, highlights inflammation as an important factor in stroke, both in determining outcome and as a contributor to risk. A number of inflammatory mediators have been proposed as key targets for intervention to reduce the burden of stroke, several reaching clinical trial, but as yet yielding no success. Many factors could explain these failures, including the lack of robust preclinical evidence and poorly designed clinical trials, in addition to the complex nature of the clinical condition. Lack of consideration in preclinical studies of associated co-morbidities prevalent in the clinical stroke population is now seen as an important omission in previous work. These co-morbidities (atherosclerosis, hypertension, diabetes, infection) have a strong inflammatory component, supporting the need for greater understanding of how inflammation contributes to acute brain injury. Interleukin (IL)-1 is the prototypical pro-inflammatory cytokine, first identified many years ago as the endogenous pyrogen. Research over the last 20 years or so reveals that IL-1 is an important mediator of neuronal injury and blocking the actions of IL-1 is beneficial in a number of experimental models of brain damage. Mechanisms underlying the actions of IL-1 in brain injury remain unclear, though increasing evidence indicates the cerebrovasculature as a key target. Recent literature supporting this and other aspects of how IL-1 and systemic inflammation in general contribute to acute brain injury are discussed in this review.

7.
Stroke ; 45(11): 3412-9, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25228257

ABSTRACT

BACKGROUND AND PURPOSE: Systemic inflammation contributes to diverse acute and chronic brain pathologies, and extensive evidence implicates inflammation in stroke susceptibility and poor outcome. Here we investigate whether systemic inflammation alters cerebral blood flow during reperfusion after experimental cerebral ischemia. METHODS: Serial diffusion and perfusion-weighted MRI was performed after reperfusion in Wistar rats given systemic (intraperitoneal) interleukin-1ß or vehicle before 60-minute transient middle cerebral artery occlusion. The expression and location of endothelin-1 was assessed by polymerase chain reaction, ELISA, and immunofluorescence. RESULTS: Systemic interleukin-1 caused a severe reduction in cerebral blood flow and increase in infarct volume compared with vehicle. Restriction in cerebral blood flow was observed alongside activation of the cerebral vasculature and upregulation of the vasoconstricting peptide endothelin-1 in the ischemic penumbra. A microthrombotic profile was also observed in the vasculature of rats receiving interleukin-1. Blockade of endothelin-1 receptors reversed this hypoperfusion, reduced tissue damage, and improved functional outcome. CONCLUSIONS: These data suggest patients with a raised inflammatory profile may have persistent deficits in perfusion after reopening of an occluded vessel. Future therapeutic strategies to interrupt the mechanism identified could lead to enhanced recovery of penumbra in patients with a heightened inflammatory burden and a better outcome after stroke.


Subject(s)
Brain Ischemia/metabolism , Cerebrovascular Circulation/physiology , Endothelins/biosynthesis , Animals , Brain Ischemia/pathology , Cerebrovascular Circulation/drug effects , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/pathology , Interleukin-1beta/toxicity , Male , Random Allocation , Rats , Rats, Wistar
8.
Behav Brain Res ; 270: 18-28, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24821402

ABSTRACT

Cerebral ischemia is one of the most common causes of disabilities in adults and leads to long-term motor and cognitive impairments with limited therapeutic possibilities. Treatment options have proven efficient in preclinical models of cerebral ischemia but have failed in the clinical setting. This limited translation may be due to the suitability of models used and outcomes measured as most studies have focused on the early period after injury with gross motor scales, which have limited correlation to the clinical situation. The aim of this study was to determine long-term functional outcomes after cerebral ischemia in rats, focusing on fine motor function, social and depressive behavior as clinically relevant measures. A secondary objective was to evaluate the effects of an anti-inflammatory treatment (interleukin-1 receptor antagonist (IL-1Ra)) on functional recovery and compensation. Infarct volume was correlated with long-term (25 days) impairments in fine motor skills, but not with emotional components of behavior. Motor impairments could not be detected using conventional neurological tests and only detailed analysis allowed differentiation between recovery and compensation. Acute systemic administration of IL-1Ra (at reperfusion) led to a faster and more complete recovery, but delayed (24h) IL-1Ra treatment had no effect. In summary functional assessment after brain injury requires detailed motor tests in order to address long-term impairments and compensation processes that are mediated by intact tissues. Functional deficits in skilled movement after brain injury represent ideal predictors of long-term outcomes and should become standard measures in the assessment of preclinical animal models.


Subject(s)
Brain Ischemia/physiopathology , Brain Ischemia/psychology , Brain/pathology , Motor Activity , Social Behavior , Animals , Antirheumatic Agents/administration & dosage , Brain/drug effects , Brain Ischemia/drug therapy , Brain Ischemia/pathology , Depression/drug therapy , Depression/psychology , Disease Models, Animal , Interleukin 1 Receptor Antagonist Protein/administration & dosage , Male , Motor Activity/drug effects , Rats , Rats, Wistar , Recovery of Function , Time Factors , Treatment Outcome
9.
Ann Neurol ; 75(5): 670-83, 2014 May.
Article in English | MEDLINE | ID: mdl-24644058

ABSTRACT

OBJECTIVE: Bacterial infection contributes to diverse noninfectious diseases and worsens outcome after stroke. Streptococcus pneumoniae, the most common infection in patients at risk of stroke, is a major cause of prolonged hospitalization and death of stroke patients, but how infection impacts clinical outcome is not known. METHODS: We induced sustained pulmonary infection by a human S. pneumoniae isolate in naive and comorbid rodents to investigate the effect of infection on vascular and inflammatory responses prior to and after cerebral ischemia. RESULTS: S. pneumoniae infection triggered atherogenesis, led to systemic induction of interleukin (IL) 1, and profoundly exacerbated (50-90%) ischemic brain injury in rats and mice, a response that was more severe in combination with old age and atherosclerosis. Systemic blockade of IL-1 with IL-1 receptor antagonist (IL-1Ra) fully reversed infection-induced exacerbation of brain injury and functional impairment caused by cerebral ischemia. We show that infection-induced systemic inflammation mediates its effects via increasing platelet activation and microvascular coagulation in the brain after cerebral ischemia, as confirmed by reduced brain injury in response to blockade of platelet glycoprotein (GP) Ibα. IL-1 and platelet-mediated signals converge on microglia, as both IL-1Ra and GPIbα blockade reversed the production of IL-1α by microglia in response to cerebral ischemia in infected animals. INTERPRETATION: S. pneumoniae infection augments atherosclerosis and exacerbates ischemic brain injury via IL-1 and platelet-mediated systemic inflammation. These mechanisms may contribute to diverse cardio- and cerebrovascular pathologies in humans.


Subject(s)
Brain Ischemia/metabolism , Brain Ischemia/pathology , Interleukin-1/adverse effects , Platelet Glycoprotein GPIb-IX Complex/adverse effects , Streptococcal Infections/metabolism , Streptococcal Infections/pathology , Streptococcus pneumoniae , Animals , Brain Ischemia/microbiology , Disease Progression , Humans , Inflammation/metabolism , Inflammation/microbiology , Inflammation/pathology , Interleukin-1/physiology , Male , Mice , Mice, Inbred C57BL , Microglia/metabolism , Microglia/microbiology , Microglia/pathology , Platelet Activation , Platelet Glycoprotein GPIb-IX Complex/antagonists & inhibitors , Platelet Glycoprotein GPIb-IX Complex/physiology , Rats , Rats, Wistar , Streptococcal Infections/microbiology
10.
Mol Cell Neurosci ; 53: 14-25, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23026562

ABSTRACT

Stroke is a major cause of morbidity and mortality, and activation of the immune system can impact on stroke outcome. Although the majority of research has focused on the role of the immune system after stroke there is increasing evidence to suggest that inflammation and immune activation prior to brain injury can influence stroke risk and outcome. With the high prevalence of co-morbidities in the Western world such as obesity, hypertension and diabetes, pre-existing chronic 'low-grade' systemic inflammation has become a customary characteristic of stroke pathophysiology that needs to be considered in the search for new therapies. The importance of the immune system in stroke has been demonstrated in a number of ways, both experimentally and in the clinical setting. This review will focus on the effect of immune activation arising from systemic inflammatory conditions and infection, how it affects the incidence and outcomes of stroke, and the possible underlying mechanisms involved. This article is part of a Special Issue entitled 'Neuroinflammation in neurodegeneration and neurodysfunction'.


Subject(s)
Adaptive Immunity , Stroke/immunology , Animals , Comorbidity , Cytokines/immunology , Disease Progression , Disease Susceptibility , Humans , Infections/complications , Infections/epidemiology , Infections/immunology , Inflammation/immunology , Stroke/epidemiology , Stroke/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...