Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
EMBO Mol Med ; 15(11): e17683, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37724723

ABSTRACT

Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality. The advent of approved treatments for this devastating condition has significantly changed SMA patients' life expectancy and quality of life. Nevertheless, these are not without limitations, and research efforts are underway to develop new approaches for improved and long-lasting benefits for patients. Protein arginine methyltransferases (PRMTs) are emerging as druggable epigenetic targets, with several small-molecule PRMT inhibitors already in clinical trials. From a screen of epigenetic molecules, we have identified MS023, a potent and selective type I PRMT inhibitor able to promote SMN2 exon 7 inclusion in preclinical SMA models. Treatment of SMA mice with MS023 results in amelioration of the disease phenotype, with strong synergistic amplification of the positive effect when delivered in combination with the antisense oligonucleotide nusinersen. Moreover, transcriptomic analysis revealed that MS023 treatment has minimal off-target effects, and the added benefit is mainly due to targeting neuroinflammation. Our study warrants further clinical investigation of PRMT inhibition both as a stand-alone and add-on therapy for SMA.


Subject(s)
Muscular Atrophy, Spinal , Quality of Life , Animals , Humans , Infant , Mice , Exons , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/genetics , Oligonucleotides/pharmacology , Oligonucleotides/therapeutic use , Survival of Motor Neuron 2 Protein/genetics , Survival of Motor Neuron 2 Protein/therapeutic use
2.
Front Endocrinol (Lausanne) ; 14: 1308604, 2023.
Article in English | MEDLINE | ID: mdl-38169965

ABSTRACT

Introduction: Bioassembly techniques for the application of scaffold-free tissue engineering approaches have evolved in recent years toward producing larger tissue equivalents that structurally and functionally mimic native tissues. This study aims to upscale a 3-dimensional bone in-vitro model through bioassembly of differentiated rat osteoblast (dROb) spheroids with the potential to develop and mature into a bone macrotissue. Methods: dROb spheroids in control and mineralization media at different seeding densities (1 × 104, 5 × 104, and 1 × 105 cells) were assessed for cell proliferation and viability by trypan blue staining, for necrotic core by hematoxylin and eosin staining, and for extracellular calcium by Alizarin red and Von Kossa staining. Then, a novel approach was developed to bioassemble dROb spheroids in pillar array supports using a customized bioassembly system. Pillar array supports were custom-designed and printed using Formlabs Clear Resin® by Formlabs Form2 printer. These supports were used as temporary frameworks for spheroid bioassembly until fusion occurred. Supports were then removed to allow scaffold-free growth and maturation of fused spheroids. Morphological and molecular analyses were performed to understand their structural and functional aspects. Results: Spheroids of all seeding densities proliferated till day 14, and mineralization began with the cessation of proliferation. Necrotic core size increased over time with increased spheroid size. After the bioassembly of spheroids, the morphological assessment revealed the fusion of spheroids over time into a single macrotissue of more than 2.5 mm in size with mineral formation. Molecular assessment at different time points revealed osteogenic maturation based on the presence of osteocalcin, downregulation of Runx2 (p < 0.001), and upregulated alkaline phosphatase (p < 0.01). Discussion: With the novel bioassembly approach used here, 3D bone macrotissues were successfully fabricated which mimicked physiological osteogenesis both morphologically and molecularly. This biofabrication approach has potential applications in bone tissue engineering, contributing to research related to osteoporosis and other recurrent bone ailments.


Subject(s)
Bone and Bones , Spheroids, Cellular , Rats , Animals , Cells, Cultured , Osteogenesis , Tissue Engineering/methods
3.
Skelet Muscle ; 12(1): 22, 2022 09 12.
Article in English | MEDLINE | ID: mdl-36089582

ABSTRACT

BACKGROUND: Spinal muscular atrophy (SMA) is a form of motor neuron disease affecting primarily children characterised by the loss of lower motor neurons (MNs). Breakdown of the neuromuscular junctions (NMJs) is an early pathological event in SMA. However, not all motor neurons are equally vulnerable, with some populations being lost early in the disease while others remain intact at the disease end-stage. A thorough understanding of the basis of this selective vulnerability will give critical insight into the factors which prohibit pathology in certain motor neuron populations and consequently help identify novel neuroprotective strategies. METHODS: To retrieve a comprehensive understanding of motor neuron susceptibility in SMA, we mapped NMJ pathology in 20 muscles from the Smn2B/- SMA mouse model and cross-compared these data with published data from three other commonly used mouse models. To gain insight into the molecular mechanisms regulating selective resilience and vulnerability, we analysed published RNA sequencing data acquired from differentially vulnerable motor neurons from two different SMA mouse models. RESULTS: In the Smn2B/- mouse model of SMA, we identified substantial NMJ loss in the muscles from the core, neck, proximal hind limbs and proximal forelimbs, with a marked reduction in denervation in the distal limbs and head. Motor neuron cell body loss was greater at T5 and T11 compared with L5. We subsequently show that although widespread denervation is observed in each SMA mouse model (with the notable exception of the Taiwanese model), all models have a distinct pattern of selective vulnerability. A comparison of previously published data sets reveals novel transcripts upregulated with a disease in selectively resistant motor neurons, including genes involved in axonal transport, RNA processing and mitochondrial bioenergetics. CONCLUSIONS: Our work demonstrates that the Smn2B/- mouse model shows a pattern of selective vulnerability which bears resemblance to the regional pathology observed in SMA patients. We found drastic differences in patterns of selective vulnerability across the four SMA mouse models, which is critical to consider during experimental design. We also identified transcript groups that potentially contribute to the protection of certain motor neurons in SMA mouse models.


Subject(s)
Muscular Atrophy, Spinal , Animals , Disease Models, Animal , Mice , Motor Neurons/metabolism , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Neuromuscular Junction/metabolism
4.
Hum Mol Genet ; 31(18): 3107-3119, 2022 09 10.
Article in English | MEDLINE | ID: mdl-35551393

ABSTRACT

Spinal muscular atrophy (SMA) is a childhood motor neuron disease caused by anomalies in the SMN1 gene. Although therapeutics have been approved for the treatment of SMA, there is a therapeutic time window, after which efficacy is reduced. Hallmarks of motor unit pathology in SMA include loss of motor-neurons and neuromuscular junction (NMJs). Following an increase in Smn levels, it is unclear how much damage can be repaired and the degree to which normal connections are re-established. Here, we perform a detailed analysis of motor unit pathology before and after restoration of Smn levels. Using a Smn-inducible mouse model of SMA, we show that genetic restoration of Smn results in a dramatic reduction in NMJ pathology, with restoration of innervation patterns, preservation of axon and endplate number and normalized expression of P53-associated transcripts. Notably, presynaptic swelling and elevated Pmaip levels remained. We analysed the effect of either early or delayed treated of an antisense oligonucleotide (ASO) targeting SMN2 on a range of differentially vulnerable muscles. Following ASO administration, the majority of endplates appeared fully occupied. However, there was an underlying loss of axons and endplates, which was more prevalent following a delay in treatment. There was an increase in average motor unit size following both early and delayed treatment. Together this work demonstrates the remarkably regenerative capacity of the motor neuron following Smn restoration, but highlights that recovery is incomplete. This work suggests that there is an opportunity to enhance neuromuscular junction recovery following administration of Smn-enhancing therapeutics.


Subject(s)
Muscular Atrophy, Spinal , Tumor Suppressor Protein p53 , Animals , Disease Models, Animal , Mice , Motor Neurons/metabolism , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Muscular Atrophy, Spinal/therapy , Oligonucleotides/pharmacology , Oligonucleotides, Antisense/pharmacology , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 1 Protein/metabolism , Tumor Suppressor Protein p53/metabolism
5.
J Anat ; 237(2): 263-274, 2020 08.
Article in English | MEDLINE | ID: mdl-32311115

ABSTRACT

Axonal and synaptic degeneration occur following nerve injury and during disease. Traumatic nerve injury results in rapid fragmentation of the distal axon and loss of synaptic terminals, in a process known as Wallerian degeneration (WD). Identifying and understanding factors that influence the rate of WD is of significant biological and clinical importance, as it will facilitate understanding of the mechanisms of neurodegeneration and identification of novel therapeutic targets. Here, we investigate levels of synaptic loss following nerve injury under a range of conditions, including during postnatal development, in a range of anatomically distinct muscles and in a mouse model of motor neuron disease. By utilising an ex vivo model of nerve injury, we show that synaptic withdrawal is slower during early postnatal development. Significantly more neuromuscular junctions remained fully innervated in the cranial nerve/muscle preparations analysed at P15 than at P25. Furthermore, we demonstrate variability in the level of synaptic withdrawal in response to injury in different muscles, with retraction being slower in abdominal preparations than in cranial muscles across all time points analysed. Importantly, differences between the cranial and thoracoabdominal musculature seen here are not consistent with differences in muscle vulnerability that have been previously reported in mouse models of the childhood motor neuron disease, spinal muscular atrophy (SMA), caused by depletion of survival motor neuron protein (Smn). To further investigate the relationship between synaptic degeneration in SMA and WD, we induced WD in preparations from the Smn2B/- mouse model of SMA. In a disease-resistant muscle (rostral band of levator auris longus), where there is minimal denervation, there was no change in the level of synaptic loss, which suggests that the process of synaptic withdrawal following injury is Smn-independent. However, in a muscle with ongoing degeneration (transvs. abdominis), the level of synaptic loss significantly increased, with the percentage of denervated endplates increasing by 33% following injury, compared to disease alone. We therefore conclude that the presence of a die-back can accelerate synaptic loss after injury in Smn2B/- mice.


Subject(s)
Motor Neurons/physiology , Muscle, Skeletal/physiopathology , Muscular Atrophy, Spinal/physiopathology , Nerve Degeneration/physiopathology , Neuromuscular Junction/physiopathology , Peripheral Nerve Injuries/physiopathology , Animals , Disease Models, Animal , Mice , Motor Neurons/pathology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy, Spinal/metabolism , Muscular Atrophy, Spinal/pathology , Nerve Degeneration/metabolism , Nerve Degeneration/pathology , Neuromuscular Junction/metabolism , Neuromuscular Junction/pathology , Peripheral Nerve Injuries/metabolism , Peripheral Nerve Injuries/pathology , Survival of Motor Neuron 1 Protein/metabolism
6.
Ann Clin Transl Neurol ; 6(8): 1519-1532, 2019 08.
Article in English | MEDLINE | ID: mdl-31402618

ABSTRACT

OBJECTIVE: Spinal muscular atrophy (SMA) is an inherited neuromuscular disorder leading to paralysis and subsequent death in young children. Initially considered a motor neuron disease, extra-neuronal involvement is increasingly recognized. The primary goal of this study was to investigate alterations in lipid metabolism in SMA patients and mouse models of the disease. METHODS: We analyzed clinical data collected from a large cohort of pediatric SMA type I-III patients as well as SMA type I liver necropsy data. In parallel, we performed histology, lipid analysis, and transcript profiling in mouse models of SMA. RESULTS: We identify an increased susceptibility to developing dyslipidemia in a cohort of 72 SMA patients and liver steatosis in pathological samples. Similarly, fatty acid metabolic abnormalities were present in all SMA mouse models studied. Specifically, Smn2B/- mice displayed elevated hepatic triglycerides and dyslipidemia, resembling non-alcoholic fatty liver disease (NAFLD). Interestingly, this phenotype appeared prior to denervation. INTERPRETATION: This work highlights metabolic abnormalities as an important feature of SMA, suggesting implementation of nutritional and screening guidelines in patients, as such defects are likely to increase metabolic distress and cardiovascular risk. This study emphasizes the need for a systemic therapeutic approach to ensure maximal benefits for all SMA patients throughout their life.


Subject(s)
Dyslipidemias/etiology , Fatty Acids/genetics , Fatty Acids/metabolism , Fatty Liver/etiology , Muscular Atrophy, Spinal/complications , Animals , Child , Child, Preschool , Disease Models, Animal , Dyslipidemias/genetics , Dyslipidemias/metabolism , Fatty Liver/genetics , Fatty Liver/metabolism , Female , Humans , Infant , Lipid Metabolism/genetics , Male , Mice , Mice, Transgenic , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Survival of Motor Neuron 1 Protein/genetics , Triglycerides/metabolism
7.
Cell Death Dis ; 10(7): 515, 2019 07 04.
Article in English | MEDLINE | ID: mdl-31273192

ABSTRACT

Spinal Muscular Atrophy (SMA) is a childhood motor neuron disease caused by mutations or deletions within the SMN1 gene. At endstages of disease there is profound loss of motor neurons, loss of axons within ventral roots and defects at the neuromuscular junctions (NMJ), as evidenced by pathological features such as pre-synaptic loss and swelling and post-synaptic shrinkage. Although these motor unit defects have been widely described, the time course and interdependancy of these aspects of motor unit degeneration are unclear. Recent reports have also revealed an early upregulation of transcripts associated with the P53 signalling pathway. The relationship between the upregulation of these transcripts and pathology within the motor unit is also unclear. In this study, we exploit the prolonged disease timecourse and defined pre-symptomatic period in the Smn2B/- mouse model to perform a temporal analysis of the different elements of motor unit pathology. We demonstrate that NMJ loss occurs prior to cell body loss, and coincides with the onset of symptoms. The onset of NMJ pathology also coincides with an increase in P53-related transcripts at the cell body. Finally, using a tamoxifen inducible P53 knockout, we demonstrate that post-natal reduction in P53 levels can reduce NMJ loss, but does not affect other aspects of NMJ pathology, motor neuron loss or the phenotype of the Smn2B/- mouse model. Together this work provides a detailed temporal description of pathology within motor units of an SMA mouse model, and demonstrates that NMJ loss is a P53-dependant process. This work supports the role for P53 as an effector of synaptic and axonal degeneration in a die-back neuropathy.


Subject(s)
Motor Neurons/pathology , Muscular Atrophy, Spinal/metabolism , Muscular Atrophy, Spinal/pathology , Neuromuscular Junction/pathology , Tumor Suppressor Protein p53/metabolism , Animals , Disease Models, Animal , Mice, Inbred C57BL , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction
8.
Neurobiol Dis ; 130: 104496, 2019 10.
Article in English | MEDLINE | ID: mdl-31176719

ABSTRACT

Neurodegenerative and neuromuscular disorders can manifest throughout the lifespan of an individual, from infant to elderly individuals. Axonal and synaptic degeneration are early and critical elements of nearly all human neurodegenerative diseases and neural injury, however the molecular mechanisms which regulate this process are yet to be fully elucidated. Furthermore, how the molecular mechanisms governing degeneration are impacted by the age of the individual is poorly understood. Interestingly, in mice which are under 3 weeks of age, the degeneration of axons and synapses following hypoxic or traumatic injury is significantly slower. This process, known as Wallerian degeneration (WD), is a molecularly and morphologically distinct subtype of neurodegeneration by which axons and synapses undergo distinct fragmentation and death following a range of stimuli. In this study, we first use an ex-vivo model of axon injury to confirm the significant delay in WD in neonatal mice. We apply tandem mass-tagging quantitative proteomics to profile both nerve and muscle between P12 and P24 inclusive. Application of unbiased in silico workflows to relevant protein identifications highlights a steady elevation in oxidative phosphorylation cascades corresponding to the accelerated degeneration rate. We demonstrate that inhibition of Complex I prevents the axotomy-induced rise in reactive oxygen species and protects axons following injury. Furthermore, we reveal that pharmacological activation of oxidative phosphorylation significantly accelerates degeneration at the neuromuscular junction in neonatal mice. In summary, we reveal dramatic changes in the neuromuscular proteome during post-natal maturation of the neuromuscular system, and demonstrate that endogenous dynamics in mitochondrial bioenergetics during this time window have a functional impact upon regulating the stability of the neuromuscular system.


Subject(s)
Mitochondria/metabolism , Neuromuscular Junction/metabolism , Oxidative Phosphorylation , Wallerian Degeneration/metabolism , Animals , Animals, Newborn , Mice , Mice, Inbred C57BL , Neuromuscular Junction/pathology , Wallerian Degeneration/pathology
9.
Hum Mol Genet ; 27(16): 2851-2862, 2018 08 15.
Article in English | MEDLINE | ID: mdl-29790918

ABSTRACT

Spinal muscular atrophy (SMA) is a progressive motor neuron disease caused by deleterious variants in SMN1 that lead to a marked decrease in survival motor neuron (SMN) protein expression. Humans have a second SMN gene (SMN2) that is almost identical to SMN1. However, due to alternative splicing the majority of SMN2 messenger ribonucleic acid (mRNA) is translated into a truncated, unstable protein that is quickly degraded. Because the presence of SMN2 provides a unique opportunity for therapy development in SMA patients, the mechanisms that regulate SMN2 splicing and mRNA expression have been elucidated in great detail. In contrast, how much SMN protein is produced at different developmental time points and in different tissues remains under-characterized. In this study, we addressed this issue by determining SMN protein expression levels at three developmental time points across six different mouse tissues and in two distinct mouse models of SMA ('severe' Taiwanese and 'intermediate' Smn2B/- mice). We found that, in healthy control mice, SMN protein expression was significantly influenced by both age and tissue type. When comparing mouse models of SMA, we found that, despite being transcribed from genetically different alleles, control SMN levels were relatively similar. In contrast, the degree of SMN depletion between tissues in SMA varied substantially over time and between the two models. These findings offer an explanation for the differential vulnerability of tissues and organs observed in SMA and further our understanding of the systemic and temporal requirements for SMN with direct relevance for developing effective therapies for SMA.


Subject(s)
Muscular Atrophy, Spinal/genetics , Survival of Motor Neuron 1 Protein/genetics , Alternative Splicing/genetics , Animals , Disease Models, Animal , Exons , Humans , Mice , Motor Neurons/metabolism , Motor Neurons/pathology , Muscular Atrophy, Spinal/physiopathology , RNA Splicing/genetics , Spinal Cord/physiopathology , Survival of Motor Neuron 2 Protein/genetics
10.
EBioMedicine ; 31: 226-242, 2018 May.
Article in English | MEDLINE | ID: mdl-29735415

ABSTRACT

The circadian glucocorticoid-Krüppel-like factor 15-branched-chain amino acid (GC-KLF15-BCAA) signaling pathway is a key regulatory axis in muscle, whose imbalance has wide-reaching effects on metabolic homeostasis. Spinal muscular atrophy (SMA) is a neuromuscular disorder also characterized by intrinsic muscle pathologies, metabolic abnormalities and disrupted sleep patterns, which can influence or be influenced by circadian regulatory networks that control behavioral and metabolic rhythms. We therefore set out to investigate the contribution of the GC-KLF15-BCAA pathway in SMA pathophysiology of Taiwanese Smn-/-;SMN2 and Smn2B/- mouse models. We thus uncover substantial dysregulation of GC-KLF15-BCAA diurnal rhythmicity in serum, skeletal muscle and metabolic tissues of SMA mice. Importantly, modulating the components of the GC-KLF15-BCAA pathway via pharmacological (prednisolone), genetic (muscle-specific Klf15 overexpression) and dietary (BCAA supplementation) interventions significantly improves disease phenotypes in SMA mice. Our study highlights the GC-KLF15-BCAA pathway as a contributor to SMA pathogenesis and provides several treatment avenues to alleviate peripheral manifestations of the disease. The therapeutic potential of targeting metabolic perturbations by diet and commercially available drugs could have a broader implementation across other neuromuscular and metabolic disorders characterized by altered GC-KLF15-BCAA signaling.


Subject(s)
Amino Acids, Branched-Chain/pharmacology , DNA-Binding Proteins , Dietary Supplements , Muscular Atrophy, Spinal , Prednisolone/pharmacology , Signal Transduction/drug effects , Transcription Factors , Animals , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Disease Models, Animal , Kruppel-Like Transcription Factors , Mice , Mice, Knockout , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Muscular Atrophy, Spinal/pathology , Transcription Factors/genetics , Transcription Factors/metabolism
11.
Eur J Med Genet ; 61(11): 685-698, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29313812

ABSTRACT

Spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS) are the two most common motoneuron disorders, which share typical pathological hallmarks while remaining genetically distinct. Indeed, SMA is caused by deletions or mutations in the survival motor neuron 1 (SMN1) gene whilst ALS, albeit being mostly sporadic, can also be caused by mutations within genes, including superoxide dismutase 1 (SOD1), Fused in Sarcoma (FUS), TAR DNA-binding protein 43 (TDP-43) and chromosome 9 open reading frame 72 (C9ORF72). However, it has come to light that these two diseases may be more interlinked than previously thought. Indeed, it has recently been found that FUS directly interacts with an Smn-containing complex, mutant SOD1 perturbs Smn localization, Smn depletion aggravates disease progression of ALS mice, overexpression of SMN in ALS mice significantly improves their phenotype and lifespan, and duplications of SMN1 have been linked to sporadic ALS. Beyond genetic interactions, accumulating evidence further suggests that both diseases share common pathological identities such as intrinsic muscle defects, neuroinflammation, immune organ dysfunction, metabolic perturbations, defects in neuron excitability and selective motoneuron vulnerability. Identifying common molecular effectors that mediate shared pathologies in SMA and ALS would allow for the development of therapeutic strategies and targeted gene therapies that could potentially alleviate symptoms and be equally beneficial in both disorders. In the present review, we will examine our current knowledge of pathogenic commonalities between SMA and ALS, and discuss how furthering this understanding can lead to the establishment of novel therapeutic approaches with wide-reaching impact on multiple motoneuron diseases.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Motor Neurons/pathology , Muscular Atrophy, Spinal/genetics , Survival of Motor Neuron 1 Protein/genetics , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/therapy , Animals , C9orf72 Protein/genetics , DNA-Binding Proteins/genetics , Humans , Mice , Muscular Atrophy, Spinal/pathology , Muscular Atrophy, Spinal/therapy , RNA-Binding Protein FUS/genetics , Superoxide Dismutase-1/genetics
12.
PLoS Genet ; 13(3): e1006680, 2017 03.
Article in English | MEDLINE | ID: mdl-28362802

ABSTRACT

The term "motor neuron disease" encompasses a spectrum of disorders in which motor neurons are the primary pathological target. However, in both patients and animal models of these diseases, not all motor neurons are equally vulnerable, in that while some motor neurons are lost very early in disease, others remain comparatively intact, even at late stages. This creates a valuable system to investigate the factors that regulate motor neuron vulnerability. In this study, we aim to use this experimental paradigm to identify potential transcriptional modifiers. We have compared the transcriptome of motor neurons from healthy wild-type mice, which are differentially vulnerable in the childhood motor neuron disease Spinal Muscular Atrophy (SMA), and have identified 910 transcriptional changes. We have compared this data set with published microarray data sets on other differentially vulnerable motor neurons. These neurons were differentially vulnerable in the adult onset motor neuron disease Amyotrophic Lateral Sclerosis (ALS), but the screen was performed on the equivalent population of neurons from neurologically normal human, rat and mouse. This cross species comparison has generated a refined list of differentially expressed genes, including CELF5, Col5a2, PGEMN1, SNCA, Stmn1 and HOXa5, alongside a further enrichment for synaptic and axonal transcripts. As an in vivo validation, we demonstrate that the manipulation of a significant number of these transcripts can modify the neurodegenerative phenotype observed in a Drosophila line carrying an ALS causing mutation. Finally, we demonstrate that vector-mediated expression of alpha-synuclein (SNCA), a transcript decreased in selectively vulnerable motor neurons in all four screens, can extend life span, increase weight and decrease neuromuscular junction pathology in a mouse model of SMA. In summary, we have combined multiple data sets to identify transcripts, which are strong candidates for being phenotypic modifiers, and demonstrated SNCA is a modifier of pathology in motor neuron disease.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Motor Neuron Disease/genetics , Motor Neurons/metabolism , alpha-Synuclein/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Axons/metabolism , Axons/pathology , Disease Models, Animal , Drosophila melanogaster/genetics , Gene Expression Regulation/genetics , Humans , Mice , Motor Neuron Disease/pathology , Motor Neurons/pathology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Neuromuscular Junction/genetics , Neuromuscular Junction/pathology , Phenotype , Rats , Transcriptome/genetics , alpha-Synuclein/biosynthesis
13.
Am J Hum Genet ; 100(5): 706-724, 2017 May 04.
Article in English | MEDLINE | ID: mdl-28413018

ABSTRACT

During neurotransmission, synaptic vesicles undergo multiple rounds of exo-endocytosis, involving recycling and/or degradation of synaptic proteins. While ubiquitin signaling at synapses is essential for neural function, it has been assumed that synaptic proteostasis requires the ubiquitin-proteasome system (UPS). We demonstrate here that turnover of synaptic membrane proteins via the endolysosomal pathway is essential for synaptic function. In both human and mouse, hypomorphic mutations in the ubiquitin adaptor protein PLAA cause an infantile-lethal neurodysfunction syndrome with seizures. Resulting from perturbed endolysosomal degradation, Plaa mutant neurons accumulate K63-polyubiquitylated proteins and synaptic membrane proteins, disrupting synaptic vesicle recycling and neurotransmission. Through characterization of this neurological intracellular trafficking disorder, we establish the importance of ubiquitin-mediated endolysosomal trafficking at the synapse.


Subject(s)
Epilepsy/genetics , Proteins/genetics , Spasms, Infantile/genetics , Synaptic Transmission , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Disease Models, Animal , Epilepsy/diagnosis , Fibroblasts/metabolism , Genotyping Techniques , Humans , Infant , Infant, Newborn , Magnetic Resonance Imaging , Mice , Mice, Transgenic , Mutation , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Protein Conformation , Proteins/metabolism , Purkinje Cells/metabolism , Spasms, Infantile/diagnosis , Synaptic Vesicles/metabolism , Transcriptome , Ubiquitin/genetics , Ubiquitin/metabolism
14.
Acta Neuropathol Commun ; 3: 55, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26374403

ABSTRACT

INTRODUCTION: The term motor neuron disease encompasses a spectrum of disorders in which motor neurons are the lost. Importantly, while some motor neurons are lost early in disease and others remain intact at disease end-stage. This creates a valuable experimental paradigm to investigate the factors that regulate motor neuron vulnerability. Spinal muscular atrophy is a childhood motor neuron disease caused by mutations or deletions in the SMN1 gene. Here, we have performed transcriptional analysis on differentially vulnerable motor neurons from an intermediate mouse model of Spinal muscular atrophy at a presymptomatic time point. RESULTS: We have characterised two differentially vulnerable populations, differing in the level neuromuscular junction loss. Transcriptional analysis on motor neuron cell bodies revealed that reduced Smn levels correlate with a reduction of transcripts associated with the ribosome, rRNA binding, ubiquitination and oxidative phosphorylation. Furthermore, P53 pathway activation precedes neuromuscular junction loss, suggesting that denervation may be a consequence, rather than a cause of motor neuron death in Spinal muscular atrophy. Finally, increased vulnerability correlates with a decrease in the positive regulation of DNA repair. CONCLUSIONS: This study identifies pathways related to the function of Smn and associated with differential motor unit vulnerability, thus presenting a number of exciting targets for future therapeutic development.


Subject(s)
Gene Expression Regulation/genetics , Motor Neurons/metabolism , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/pathology , Survival of Motor Neuron 1 Protein/genetics , Animals , Asymptomatic Diseases , Benzofurans , Bungarotoxins/metabolism , Cell Death/genetics , Disease Models, Animal , Gene Expression Profiling , Intermediate Filaments/metabolism , Laser Capture Microdissection , Membrane Glycoproteins/metabolism , Mice , Mice, Transgenic , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Nerve Tissue Proteins/metabolism , Neuromuscular Junction/metabolism , Neuromuscular Junction/pathology , Oligonucleotide Array Sequence Analysis , Quinolines , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Signal Transduction/genetics , Time Factors
15.
Expert Rev Neurother ; 15(9): 965-8, 2015.
Article in English | MEDLINE | ID: mdl-26189552

ABSTRACT

Spinal muscular atrophy (SMA) is a devastating motor neuron disease primarily affecting children, for which there is currently no known disease-modifying therapy or cure. The identification of the disease gene, survival motor neuron, led to an expansion in SMA research and allowed the creation of numerous animal and cellular models. This led to a significant increase in our understanding of the pathophysiology of SMA, culminating in the development of multiple SMN-dependent and -independent therapies. Among the most exciting options, viral gene therapy has emerged as one leading candidate. A growing body of pre-clinical evidence suggests that administration of scAAV9 carrying an SMN transgene can be both efficacious and translationally viable. In this article, we briefly review the progress which has been made in the field, and provide a commentary on some of the challenges which remain.


Subject(s)
Genetic Therapy/trends , Muscular Atrophy, Spinal/therapy , Animals , Disease Models, Animal , Humans , Motor Neurons/physiology , Survival of Motor Neuron 1 Protein/genetics
16.
Virology ; 468-470: 444-453, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25243333

ABSTRACT

We have investigated whether reducing the overall size of adenovirus (Ad), through use of a vector containing a shortened fibre, leads to enhanced distribution and dissemination of the vector. Intravenous or intraperitoneal injection of Ad5SlacZ (12 nm fibre versus the normal Ad5 37 nm fibre) or Ad5SpKlacZ (shortened fibre with polylysine motif in the H-I loop of fibre knob domain) led to similar levels of lacZ expression compared to Ad5LlacZ (native Ad5 fibre) in the liver of treated animals, but did not enhance extravasation into the tibialis anterior muscle. Direct injection of the short-fibre vectors into the tibialis anterior muscle did not result in enhanced spread of the vector through muscle tissue, and led to only sporadic transgene expression in the spinal cord, suggesting that modifying the fibre length or redirecting viral infection to a more common cell surface receptor does not enhance motor neuron uptake or retrograde transport.


Subject(s)
Adenoviruses, Human/physiology , Gene Transfer Techniques , Muscle, Skeletal/virology , Viral Proteins/metabolism , Adenoviruses, Human/genetics , Adenoviruses, Human/metabolism , Animals , Capsid Proteins/genetics , Cell Line , Gene Expression Regulation, Viral , Genetic Vectors , Mice , Motor Neurons/metabolism , Motor Neurons/virology , Receptors, Virus , Transgenes , Viral Proteins/genetics
17.
PLoS One ; 9(7): e101225, 2014.
Article in English | MEDLINE | ID: mdl-24984019

ABSTRACT

Spinal muscular atrophy is an autosomal recessive neuromuscular disease characterized by the progressive loss of alpha motor neurons in the spinal cord. Trichostatin A (TSA) is a histone deacetylase inhibitor with beneficial effects in spinal muscular atrophy mouse models that carry the human SMN2 transgene. It is currently unclear whether TSA specifically targets the SMN2 gene or whether other genes respond to TSA and in turn provide neuroprotection in SMA mice. We have taken advantage of the Smn2B/- mouse model that does not harbor the human SMN2 transgene, to test the hypothesis that TSA has its beneficial effects through a non-SMN mediated pathway. TSA increased the median lifespan of Smn2B/- mice from twenty days to eight weeks. As well, there was a significant attenuation of weight loss and improved motor behavior. Pen test and righting reflex both showed significant improvement, and motor neurons in the spinal cord of Smn2B/- mice were protected from degeneration. Both the size and maturity of neuromuscular junctions were significantly improved in TSA treated Smn2B/- mice. Of interest, TSA treatment did not increase the levels of Smn protein in mouse embryonic fibroblasts or myoblasts obtained from the Smn2B/- mice. In addition, no change in the level of Smn transcripts or protein in the brain or spinal cord of TSA-treated SMA model mice was observed. Furthermore, TSA did not increase Smn protein levels in the hind limb muscle, heart, or liver of Smn2B/- mice. We therefore conclude that TSA likely exerts its effects independent of the endogenous mouse Smn gene. As such, identification of the pathways regulated by TSA in the Smn2B/- mice could lead to the development of novel therapeutics for treating SMA.


Subject(s)
Histone Deacetylase Inhibitors/therapeutic use , Hydroxamic Acids/therapeutic use , Muscular Atrophy, Spinal/drug therapy , Neuroprotective Agents/therapeutic use , Survival of Motor Neuron 2 Protein/genetics , Animals , Disease Models, Animal , Humans , Mice , Motor Activity/drug effects , Motor Activity/genetics , Motor Neurons/drug effects , Muscular Atrophy, Spinal/genetics
18.
Hum Mol Genet ; 23(16): 4249-59, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24691550

ABSTRACT

Mutations in the survival motor neuron (SMN1) gene lead to the neuromuscular disease spinal muscular atrophy (SMA). Although SMA is primarily considered as a motor neuron disease, the importance of muscle defects in its pathogenesis has not been fully examined. We use both primary cell culture and two different SMA model mice to demonstrate that reduced levels of Smn lead to a profound disruption in the expression of myogenic genes. This disruption was associated with a decrease in myofiber size and an increase in immature myofibers, suggesting that Smn is crucial for myogenic gene regulation and early muscle development. Histone deacetylase inhibitor trichostatin A treatment of SMA model mice increased myofiber size, myofiber maturity and attenuated the disruption of the myogenic program in these mice. Taken together, our work highlights the important contribution of myogenic program dysregulation to the muscle weakness observed in SMA.


Subject(s)
Gene Expression Regulation , Muscle Development/genetics , Muscular Atrophy, Spinal/pathology , Survival of Motor Neuron 1 Protein/genetics , Animals , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Mice, Inbred C57BL , Mice, Knockout , Muscle Denervation , Muscle Development/drug effects , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscular Atrophy, Spinal/genetics , Myoblasts/metabolism , Survival of Motor Neuron 1 Protein/metabolism
19.
Hum Mol Genet ; 23(13): 3432-44, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24497575

ABSTRACT

Spinal muscular atrophy (SMA) is characterized by motor neuron loss, caused by mutations or deletions in the ubiquitously expressed survival motor neuron 1 (SMN1) gene. We recently identified a novel role for Smn protein in glucose metabolism and pancreatic development in both an intermediate SMA mouse model (Smn(2B/-)) and type I SMA patients. In the present study, we sought to determine if the observed metabolic and pancreatic defects are SMA-dependent. We employed a line of heterozygous Smn-depleted mice (Smn(+/-)) that lack the hallmark SMA neuromuscular pathology and overt phenotype. At 1 month of age, pancreatic/metabolic function of Smn(+/-)mice is indistinguishable from wild type. However, when metabolically challenged with a high-fat diet, Smn(+/-)mice display abnormal localization of glucagon-producing α-cells within the pancreatic islets and increased hepatic insulin and glucagon sensitivity, through increased p-AKT and p-CREB, respectively. Further, aging results in weight gain, an increased number of insulin-producing ß cells, hyperinsulinemia and increased hepatic glucagon sensitivity in Smn(+/-)mice. Our study uncovers and highlights an important function of Smn protein in pancreatic islet development and glucose metabolism, independent of canonical SMA pathology. These findings suggest that carriers of SMN1 mutations and/or deletions may be at an increased risk of developing pancreatic and glucose metabolism defects, as even small depletions in Smn protein may be a risk factor for diet- and age-dependent development of metabolic disorders.


Subject(s)
Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/pathology , Pancreas/metabolism , Pancreas/pathology , Survival of Motor Neuron 1 Protein/genetics , Animals , Male , Mice , Obesity/genetics , Obesity/metabolism , Phenotype
20.
Skelet Muscle ; 3(1): 24, 2013 Oct 11.
Article in English | MEDLINE | ID: mdl-24119341

ABSTRACT

BACKGROUND: The childhood neuromuscular disease spinal muscular atrophy (SMA) is caused by mutations or deletions of the survival motor neuron (SMN1) gene. Although SMA has traditionally been considered a motor neuron disease, the muscle-specific requirement for SMN has never been fully defined. Therefore, the purpose of this study was to investigate muscle defects in mouse models of SMA. METHODS: We have taken advantage of two different mouse models of SMA, the severe Smn-/-;SMN2 mice and the less severe Smn2B/- mice. We have measured the maximal force produced from control muscles and those of SMA model mice by direct stimulation using an ex vivo apparatus. Immunofluorescence and immunoblot experiments were performed to uncover muscle defects in mouse models of SMA. Means from control and SMA model mice samples were compared using an analysis of variance test and Student's t tests. RESULTS: We report that tibialis anterior (TA) muscles of phenotype stage Smn-/-;SMN2 mice generate 39% less maximal force than muscles from control mice, independently of aberrant motor neuron signal transmission. In addition, during muscle fatigue, the Smn-/-;SMN2 muscle shows early onset and increased unstimulated force compared with controls. Moreover, we demonstrate a significant decrease in force production in muscles from pre-symptomatic Smn-/-;SMN2 and Smn2B/- mice, indicating that muscle weakness is an early event occurring prior to any overt motor neuron loss and muscle denervation. Muscle weakness in mouse models of SMA was associated with a delay in the transition from neonatal to adult isoforms of proteins important for proper muscle contractions, such as ryanodine receptors and sodium channels. Immunoblot analyses of extracts from hindlimb skeletal muscle revealed aberrant levels of the sarcoplasmic reticulum Ca2+ ATPase. CONCLUSIONS: The findings from this study reveal a delay in the appearance of mature isoforms of proteins important for muscle contractions, as well as muscle weakness early in the disease etiology, thus highlighting the contributions of skeletal muscle defects to the SMA phenotype.

SELECTION OF CITATIONS
SEARCH DETAIL
...