Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Divers ; 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38240950

ABSTRACT

Peptide-based therapeutics have been gaining attention due to their ability to actively target tumor cells. Additionally, several varieties of nucleotide derivatives have been developed to reduce cell proliferation and induce apoptosis of tumor cells. In this work, we have developed novel peptide conjugates with newly designed purine analogs and pyrimidine derivatives and explored the binding interactions with the kinase domain of wild-type EGFR and its mutant EGFR [L858R/ T790M] which are known to be over-expressed in tumor cells. The peptides explored included WNWKV (derived from sea cucumber) and LARFFS, which in previous work was predicted to bind to Domain I of EGFR. Computational studies conducted to explore binding interactions include molecular docking studies, molecular dynamics simulations and MMGBSA to investigate the binding abilities and stability of the complexes. The results indicate that conjugation enhanced binding capabilities, particularly for the WNWKV conjugates. MMGBSA analysis revealed nearly twofold higher binding toward the T790M/L858R double mutant receptor. Several conjugates were shown to have strong and stable binding with both wild-type and mutant EGFR. As a proof of concept, we synthesized pyrimidine conjugates with both peptides and determined the KD values using SPR analysis. The results corroborated with the computational analyses. Additionally, cell viability and apoptosis studies with lung cancer cells expressing the wild-type and double mutant proteins revealed that the WNWKV conjugate showed greater potency than the LARFFS conjugate, while LARFFS peptide alone showed poor binding to the kinase domain. Thus, we have designed peptide conjugates that show potential for further laboratory studies for developing therapeutics for targeting the EGFR receptor and its mutant T790M/L858R.

2.
ACS Omega ; 8(13): 12124-12143, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37033803

ABSTRACT

Peptide nanoassemblies have garnered remarkable importance in the development of novel nanoscale biomaterials for drug delivery into tumor cells. Taking advantage of receptor mediated recognition of two known peptides, angiopep-2 (TFFYGGSRGKRNNFKTEEY) and A-COOP-K (ACGLSGLC10 VAK) that bind to the over-expressed receptors low density lipoprotein (LRP-1) and fatty acid binding protein (FABP3) respectively, we have developed new peptide conjugates by combining the anti-inflammatory, antitumor compound azelaic acid with angiopep-2, which efficiently self-assembled into nanofibers. Those nanofibers were then functionalized with the A-COOP-K sequence and formed supramolecular hierarchical structures that were found to entrap the chemotherapeutic drug doxorubicin efficaciously. Furthermore, the nanoassemblies were found to release the drug in a dose-dependent manner and showed a stepwise increase over a period of 2 weeks under acidic conditions. Two cell lines (U-87-MG and U-138-MG) were utilized as models for glioblastoma cells grown in the presence of serum and under serum-free conditions to mimic the growth conditions of natural tumors. The drug entrapped assemblies were found to inhibit the cell proliferation of both U-87 and U-138MG glioblastoma cells. Three dimensional spheroids of different sizes were grown to mimic the tumors and evaluate the efficacy of drug release and internalization. Our results indicated that the nanoassemblies were found to have higher internalization of DOX and were well-spread throughout the spheroids grown, particularly under serum-free conditions. The nanoassemblies also displayed blood-brain barrier penetration when tested with a multicellular in vitro model. Such self-assembled nanostructures with targeting ability may provide a suitable platform for the development of new peptide-based biomaterials that can provide more insights about the mechanistic approach for drug delivery for not only 2D cell cultures but also 3D tumoroids that mimic the tumor microenvironments.

3.
Mol Divers ; 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36847923

ABSTRACT

Recent studies have shown that Ephrin receptors may be upregulated in several types of cancers including breast, ovarian and endometrial cancers, making them a target for drug design. In this work, we have utilized a target-hopping approach to design new natural product-peptide conjugates and examined their interactions with the kinase-binding domain of EphB4 and EphB2 receptors. The peptide sequences were generated through point mutations of the known EphB4 antagonist peptide TNYLFSPNGPIA. Their anticancer properties and secondary structures were analyzed computationally. Conjugates of most optimum of peptides were then designed by binding the N-terminal of the peptides with the free carboxyl group of the polyphenols sinapate, gallate and coumarate, which are known for their inherent anticancer properties. To investigate if these conjugates have a potential to bind to the kinase domain, we carried out docking studies and MMGBSA free energy calculations of the trajectories based on the molecular dynamics simulations, with both the apo and the ATP bound kinase domains of both receptors. In most cases binding interactions occurred within the catalytic loop region, while in some cases the conjugates were found to spread out across the N-lobe and the DFG motif region. The conjugates were further tested for prediction of pharmacokinetic properties using ADME studies. Our results indicated that the conjugates were lipophilic and MDCK permeable with no CYP interactions. These findings provide an insight into the molecular interactions of these peptides and conjugates with the kinase domain of the EphB4 and EphB2 receptor. As a proof of concept, we synthesized and carried out SPR analysis with two of the conjugates (gallate-TNYLFSPNGPIA and sinapate-TNYLFSPNGPIA). Results indicated that the conjugates showed higher binding with the EphB4 receptor and minimal binding to EphB2 receptor. Sinapate-TNYLFSPNGPIA showed inhibitory activity against EphB4. These studies reveal that some of the conjugates may be developed for further investigation into in vitro and in vivo studies and potential development as therapeutics.

4.
BMC Cancer ; 11: 59, 2011 Feb 08.
Article in English | MEDLINE | ID: mdl-21303533

ABSTRACT

BACKGROUND: Transforming growth factor (TGF)-ß plays a dual role during mammary gland development and tumorigenesis and has been shown to stimulate epithelial-mesenchymal transition (EMT) as well as cellular migration. The Wnt/ß-catenin pathway is also implicated in EMT and inappropriate activation of the Wnt/ß-catenin signaling pathway leads to the development of several human cancers, including breast cancer. Secreted frizzled-related protein 1 (SFRP1) antagonizes this pathway and loss of SFRP1 expression is frequently observed in breast tumors and breast cancer cell lines. We previously showed that when SFRP1 is knocked down in immortalized non-malignant mammary epithelial cells, the cells (TERT-siSFRP1) acquire characteristics associated with breast tumor initiating cells. The phenotypic and genotypic changes that occur in response to SFRP1 loss are consistent with EMT, including a substantial increase in the expression of ZEB2. Considering that ZEB2 has been shown to interact with mediators of TGF-ß signaling, we sought to determine whether TGF-ß signaling is altered in TERT-siSFRP1 cells. METHODS: Luciferase reporter assays and real-time PCR analysis were employed to measure TGF-ß transcriptional targets. Western blot analysis was used to evaluate TGF-ß-mediated ERK1/2 phosphorylation. Migration chamber assays were utilized to quantify cellular migration. TERT-siSFRP1 cells were transfected with Stealth RNAi™ siRNA in order to knock-down the expression of ZEB2. RESULTS: TERT-siSFRP1 cells exhibit a significant increase in both TGF-ß-mediated luciferase activity as well as TGF-ß transcriptional targets, including Integrin ß3 and PAI-1. Phosphorylation of ERK1/2 is increased in TERT-siSFRP1 cells in response to enhanced TGF-ß signaling. Furthermore, when the TGF-ß pathway is blocked with a TGF-ßR antagonist (LY364947), cellular migration is significantly hindered. Finally, we found that when ZEB2 is knocked-down, there is a significant reduction in the expression of exogeneous and endogenous TGF-ß transcriptional targets and cellular migration is impeded. CONCLUSIONS: We demonstrate that down-regulation of SFRP1 renders mammary epithelial cells more sensitive to TGF-ß signaling which can be partially ameliorated by blocking the expression of ZEB2.


Subject(s)
Intercellular Signaling Peptides and Proteins/deficiency , Membrane Proteins/deficiency , Transforming Growth Factor beta/metabolism , Animals , Down-Regulation , Epithelial-Mesenchymal Transition , Gene Knockdown Techniques , Homeodomain Proteins/antagonists & inhibitors , Homeodomain Proteins/biosynthesis , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Phosphorylation , Pyrazoles/pharmacology , Pyrroles/pharmacology , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/biosynthesis , Signal Transduction , Telomerase/genetics , Telomerase/metabolism , Zinc Finger E-box Binding Homeobox 2
SELECTION OF CITATIONS
SEARCH DETAIL
...