Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38798364

ABSTRACT

Alzheimer's Disease (AD) is a global health issue, affecting over 6 million in the United States, with that number expected to increase as the aging population grows. As a neurodegenerative disorder that affects memory and cognitive functions, it is well established that AD is associated with cardiovascular risk factors beyond only cerebral decline. However, the study of cerebrovascular techniques for AD is still evolving. Here, we provide reproducible methods to measure impedance-based pulse wave velocity (PWV), a marker of arterial stiffness, in the systemic vascular (aortic PWV) and in the cerebral vascular (cerebral PWV) systems. Using aortic impedance and this relatively novel technique of cerebral impedance to comprehensively describe the systemic vascular and the cerebral vascular systems, we examined the sex-dependent differences in 5x transgenic mice (5XFAD) with AD under normal and high-fat diet, and in wild-type mice under a normal diet. Additionally, we validated our method for measuring cerebrovascular impedance in a model of induced stress in 5XFAD. Together, our results show that sex and diet differences in wildtype and 5XFAD mice account for very minimal differences in cerebral impedance. Interestingly, 5XFAD, and not wildtype, male mice on a chow diet show higher cerebral impedance, suggesting pathological differences. Opposingly, when we subjected 5XFAD mice to stress, we found that females showed elevated cerebral impedance. Using this validated method of measuring impedance-based aortic and cerebral PWV, future research may explore the effects of modifying factors including age, chronic diet, and acute stress, which may mediate cardiovascular risk in AD. New and Noteworthy: Here, we presented a new technique which is an application of the concept of aortic impedance to determining cerebral impedance. While aortic PWV is typically utilized to study aortic stiffness, we also developed a technique of cerebral PWV to study cerebral vascular stiffness. This method may be useful in improving the rigor of studies that seek to have a dual focus on cardiovascular and cerebral function.

2.
STAR Protoc ; 5(2): 102997, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38748884

ABSTRACT

It is well-understood that the science, technology, engineering, and mathematics (STEM) fields have unique challenges that discourage recruiting and retaining underrepresented minorities. Research programs aimed at undergraduates have arisen as a critical mechanism for fostering innovation and addressing the challenges faced by underrepresented minorities. Here, we review various undergraduate research programs designed to provide exposure to undergraduates, with a focus on underrepresented minorities in STEM disciplines. We provide insight into selected programs' objectives, key features, potential limitations, and outcomes. We also offer recommendations for future improvements of each research program, particularly in the context of mentorship. These programs range from broad-reaching initiatives (e.g., Leadership Alliance) to more specific programs targeting underrepresented students. By offering a nuanced understanding of each program's structure, we seek to provide a brief overview of the landscape of diversity-focused STEM initiatives and a guide on how to run a research program effectively.

3.
J Cell Physiol ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38770789

ABSTRACT

The sorting and assembly machinery (SAM) Complex is responsible for assembling ß-barrel proteins in the mitochondrial membrane. Comprising three subunits, Sam35, Sam37, and Sam50, the SAM complex connects the inner and outer mitochondrial membranes by interacting with the mitochondrial contact site and cristae organizing system complex. Sam50, in particular, stabilizes the mitochondrial intermembrane space bridging (MIB) complex, which is crucial for protein transport, respiratory chain complex assembly, and regulation of cristae integrity. While the role of Sam50 in mitochondrial structure and metabolism in skeletal muscle remains unclear, this study aims to investigate its impact. Serial block-face-scanning electron microscopy and computer-assisted 3D renderings were employed to compare mitochondrial structure and networking in Sam50-deficient myotubes from mice and humans with wild-type (WT) myotubes. Furthermore, autophagosome 3D structure was assessed in human myotubes. Mitochondrial metabolic phenotypes were assessed using Gas Chromatography-Mass Spectrometry-based metabolomics to explore differential changes in WT and Sam50-deficient myotubes. The results revealed increased mitochondrial fragmentation and autophagosome formation in Sam50-deficient myotubes compared to controls. Metabolomic analysis indicated elevated metabolism of propanoate and several amino acids, including ß-Alanine, phenylalanine, and tyrosine, along with increased amino acid and fatty acid metabolism in Sam50-deficient myotubes. Furthermore, impairment of oxidative capacity was observed upon Sam50 ablation in both murine and human myotubes, as measured with the XF24 Seahorse Analyzer. Collectively, these findings support the critical role of Sam50 in establishing and maintaining mitochondrial integrity, cristae structure, and mitochondrial metabolism. By elucidating the impact of Sam50-deficiency, this study enhances our understanding of mitochondrial function in skeletal muscle.

4.
J Cell Physiol ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38595027

ABSTRACT

Qualifying exams and thesis committees are crucial components of a PhD candidate's journey. However, many candidates have trouble navigating these milestones and knowing what to expect. This article provides advice on meeting the requirements of the qualifying exam, understanding its format and components, choosing effective preparation strategies, retaking the qualifying exam, if necessary, and selecting a thesis committee, all while maintaining one's mental health. This comprehensive guide addresses components of the graduate school process that are often neglected.

5.
J Cell Physiol ; 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38462753

ABSTRACT

While some established undergraduate summer programs are effective across many institutions, these programs may only be available to some principal investigators or may not fully address the diverse needs of incoming undergraduates. This article outlines a 10-week science, technology, engineering, mathematics, and medicine (STEMM) education program designed to prepare undergraduate students for graduate school through a unique model incorporating mentoring dyads and triads, cultural exchanges, and diverse activities while emphasizing critical thinking, research skills, and cultural sensitivity. Specifically, we offer a straightforward and adaptable guide that we have used for mentoring undergraduate students in a laboratory focused on mitochondria and microscopy, but which may be customized for other disciplines. Key components include self-guided projects, journal clubs, various weekly activities such as mindfulness training and laboratory techniques, and a focus on individual and cultural expression. Beyond this unique format, this 10-week program also seeks to offer an intensive research program that emulates graduate-level experiences, offering an immersive environment for personal and professional development, which has led to numerous achievements for past students, including publications and award-winning posters.

7.
J Cell Physiol ; 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38226956

ABSTRACT

A first-generation college student is typically defined as a student whose biological parent(s) or guardian(s) never attended college or who started but did not finish college. However, "first-generation" can represent diverse family education situations. The first-generation student community is a multifaceted, and intersectional group of individuals who frequently lack educational/financial resources to succeed and, consequently, require supportive environments with rigorous mentorship. However, first-generation students often do not make their identity as first-generation students known to others due to several psychosocial and academic factors. Therefore, they are often "invisible minorities" in higher education. In this paper, we describe the diverse family situations of first-generation students, further define "first-generation," and suggest five actions that first-generation trainees at the undergraduate/graduate stages can engage in to succeed in an academic climate. We also provide suggestions for mentors to accommodate first-generation students' unique experiences and equip them with tools to deliver intentional mentoring practices. We hope that this paper will help promote first-generation student success throughout the academic pipeline.

8.
Adv Biol (Weinh) ; 8(1): e2300186, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37607124

ABSTRACT

Mitochondria are required for energy production and even give brown adipose tissue (BAT) its characteristic color due to their high iron content and abundance. The physiological function and bioenergetic capacity of mitochondria are connected to the structure, folding, and organization of its inner-membrane cristae. During the aging process, mitochondrial dysfunction is observed, and the regulatory balance of mitochondrial dynamics is often disrupted, leading to increased mitochondrial fragmentation in aging cells. Therefore, it is hypothesized that significant morphological changes in BAT mitochondria and cristae will be present with aging. A quantitative 3D electron microscopy approach is developed to map cristae network organization in mouse BAT to test this hypothesis. Using this methodology, the 3D morphology of mitochondrial cristae is investigated in adult (3-month) and aged (2-year) murine BAT tissue via serial block face-scanning electron microscopy (SBF-SEM) and 3D reconstruction software for manual segmentation, analysis, and quantification. Upon investigation, an increase is found in mitochondrial volume, surface area, and complexity and decreased sphericity in aged BAT, alongside significant decreases in cristae volume, area, perimeter, and score. Overall, these data define the nature of the mitochondrial structure in murine BAT across aging.


Subject(s)
Adipose Tissue, Brown , Mitochondrial Membranes , Animals , Mice , Adipose Tissue, Brown/metabolism , Mitochondria/metabolism , Energy Metabolism/physiology , Aging
9.
Heliyon ; 9(12): e22335, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38144282

ABSTRACT

Underrepresented faculty have higher burnout rates and lower grant attainment rates when compared with their non-minority counterparts. Many in science, technology, engineering, mathematics, and medicine (STEMM) disciplines, including underrepresented individuals, often have difficulty dedicating time to the writing process, with trainees often being relegated to laboratory tasks in their training years, resulting in a lack of practice in academic writing. Notably, past studies have shown that grant attainment rates of underrepresented individuals are lower than their majority counterparts. Here, we sought to consider a mechanism targeted to underrepresented individuals, although applicable to everyone, to help overcome traditional barriers to writing in STEMM. The authors have hosted a writing accountability group (WAG) that uniquely provides a format focused on physical activity and different forms of writing to strengthen both career development and award/funding attainment. Our objectives were to evaluate this unique format, thus creating a resource for individuals and institutions to learn about WAGs and expand upon the framework to formulate their own WAG. To do this, we performed a small pilot study (n = 21) to investigate attitudes towards the WAG. We present the results of a survey conducted among underrepresented WAG participants, which spanned different career stages and was highly diverse demographically. Our results show that following attendance of our WAG, individuals did not note a significant change in scales pertaining to John Henryism (high-effort coping), resilience, sense of belonging, or grit. However, significant increases were noted in the self-perceived ability to handle stress, confidence in applying for awards, appreciation for mentoring, and satisfaction of WAGs. Taken together, the results of this study suggest that our unique WAG format can have some positive results as a career and writing development opportunity and may be able to support underrepresented individuals in attaining funding at higher education institutions.

10.
Mol Cell ; 83(21): 3766-3772, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37922871

ABSTRACT

Building a diverse laboratory that is equitable is critical for the retention of talent and the growth of trainees professionally and personally. Here, we outline several strategies including enhancing understanding of cultural competency and humility, establishing laboratory values, and developing equitable laboratory structures to create an inclusive laboratory environment to enable trainees to achieve their highest success.


Subject(s)
Diversity, Equity, Inclusion , Laboratories
11.
Aging Cell ; 22(12): e14009, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37960952

ABSTRACT

During aging, muscle gradually undergoes sarcopenia, the loss of function associated with loss of mass, strength, endurance, and oxidative capacity. However, the 3D structural alterations of mitochondria associated with aging in skeletal muscle and cardiac tissues are not well described. Although mitochondrial aging is associated with decreased mitochondrial capacity, the genes responsible for the morphological changes in mitochondria during aging are poorly characterized. We measured changes in mitochondrial morphology in aged murine gastrocnemius, soleus, and cardiac tissues using serial block-face scanning electron microscopy and 3D reconstructions. We also used reverse transcriptase-quantitative PCR, transmission electron microscopy quantification, Seahorse analysis, and metabolomics and lipidomics to measure changes in mitochondrial morphology and function after loss of mitochondria contact site and cristae organizing system (MICOS) complex genes, Chchd3, Chchd6, and Mitofilin. We identified significant changes in mitochondrial size in aged murine gastrocnemius, soleus, and cardiac tissues. We found that both age-related loss of the MICOS complex and knockouts of MICOS genes in mice altered mitochondrial morphology. Given the critical role of mitochondria in maintaining cellular metabolism, we characterized the metabolomes and lipidomes of young and aged mouse tissues, which showed profound alterations consistent with changes in membrane integrity, supporting our observations of age-related changes in muscle tissues. We found a relationship between changes in the MICOS complex and aging. Thus, it is important to understand the mechanisms that underlie the tissue-dependent 3D mitochondrial phenotypic changes that occur in aging and the evolutionary conservation of these mechanisms between Drosophila and mammals.


Subject(s)
Imaging, Three-Dimensional , Mitochondria Associated Membranes , Mice , Animals , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , DNA, Mitochondrial/metabolism , Mitochondrial Proteins/metabolism , Mammals/genetics , Mammals/metabolism
12.
Trends Chem ; 5(4): 245-248, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37743974

ABSTRACT

In this paper, we propose ways to address diversity, equity, and inclusion (DEI) challenges and outline steps and methodologies for creating allies and empowering leaders to support DEI efforts in science, technology, engineering, mathematics, and medicine (STEMM) for underrepresented minorities (URMs).

13.
iScience ; 26(10): 107766, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37736045

ABSTRACT

Maximizing Access to Research Careers (MARC) programs are aimed to increase diversity in science, technology, engineering, math, and medicine (STEMM) fields. However, limited programs and eligibility requirements limit the students who may apply to similar programs. At Winston-Salem State University, we piloted a series of workshops, collectively termed Project Strengthen, to emulate some of the key aspects of MARC programs. Following the workshop, Project Strengthen students showed a significant increase in their understanding of essential educational development skills, such as writing personal statements, applying to graduate school, studying for the GRE, and seeking summer internships. This suggests Project Strengthen may be a potential lower cost comparable option than MARC to make up for current deficiencies in preparedness for graduate school. We also provide educational materials from Project Strengthen, including a clear framework for this seminar series, six ready-made PowerPoints to share with trainees that have been demonstrated to be effective.

14.
bioRxiv ; 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37577723

ABSTRACT

Mitochondria are required for energy production and even give brown adipose tissue (BAT) its characteristic color due to their high iron content and abundance. The physiological function and bioenergetic capacity of mitochondria are connected to the structure, folding, and organization of its inner-membrane cristae. During the aging process, mitochondrial dysfunction is observed, and the regulatory balance of mitochondrial dynamics is often disrupted, leading to increased mitochondrial fragmentation in aging cells. Therefore, we hypothesized that significant morphological changes in BAT mitochondria and cristae would be present with aging. We developed a quantitative three-dimensional (3D) electron microscopy approach to map cristae network organization in mouse BAT to test this hypothesis. Using this methodology, we investigated the 3D morphology of mitochondrial cristae in adult (3-month) and aged (2-year) murine BAT tissue via serial block face-scanning electron microscopy (SBF-SEM) and 3D reconstruction software for manual segmentation, analysis, and quantification. Upon investigation, we found increases in mitochondrial volume, surface area, and complexity and decreased sphericity in aged BAT, alongside significant decreases in cristae volume, area, perimeter, and score. Overall, these data define the nature of the mitochondrial structure in murine BAT across aging.

15.
Am J Physiol Heart Circ Physiol ; 325(5): H965-H982, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37624101

ABSTRACT

With sparse treatment options, cardiac disease remains a significant cause of death among humans. As a person ages, mitochondria breakdown and the heart becomes less efficient. Heart failure is linked to many mitochondria-associated processes, including endoplasmic reticulum stress, mitochondrial bioenergetics, insulin signaling, autophagy, and oxidative stress. The roles of key mitochondrial complexes that dictate the ultrastructure, such as the mitochondrial contact site and cristae organizing system (MICOS), in aging cardiac muscle are poorly understood. To better understand the cause of age-related alteration in mitochondrial structure in cardiac muscle, we used transmission electron microscopy (TEM) and serial block facing-scanning electron microscopy (SBF-SEM) to quantitatively analyze the three-dimensional (3-D) networks in cardiac muscle samples of male mice at aging intervals of 3 mo, 1 yr, and 2 yr. Here, we present the loss of cristae morphology, the inner folds of the mitochondria, across age. In conjunction with this, the three-dimensional (3-D) volume of mitochondria decreased. These findings mimicked observed phenotypes in murine cardiac fibroblasts with CRISPR/Cas9 knockout of Mitofilin, Chchd3, Chchd6 (some members of the MICOS complex), and Opa1, which showed poorer oxidative consumption rate and mitochondria with decreased mitochondrial length and volume. In combination, these data show the need to explore if loss of the MICOS complex in the heart may be involved in age-associated mitochondrial and cristae structural changes.NEW & NOTEWORTHY This article shows how mitochondria in murine cardiac changes, importantly elucidating age-related changes. It also is the first to show that the MICOS complex may play a role in outer membrane mitochondrial structure.


Subject(s)
Mitochondria , Myocardium , Humans , Male , Mice , Animals , Mitochondria/metabolism , Myocardium/metabolism , Heart , Aging , Signal Transduction , Mitochondrial Proteins/metabolism
17.
bioRxiv ; 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37292887

ABSTRACT

The Sorting and Assembly Machinery (SAM) Complex is responsible for assembling ß-barrel proteins in the mitochondrial membrane. Comprising three subunits, Sam35, Sam37, and Sam50, the SAM complex connects the inner and outer mitochondrial membranes by interacting with the mitochondrial contact site and cristae organizing system (MICOS) complex. Sam50, in particular, stabilizes the mitochondrial intermembrane space bridging (MIB) complex, which is crucial for protein transport, respiratory chain complex assembly, and regulation of cristae integrity. While the role of Sam50 in mitochondrial structure and metabolism in skeletal muscle remains unclear, this study aims to investigate its impact. Serial block-face-scanning electron microscopy (SBF-SEM) and computer-assisted 3D renderings were employed to compare mitochondrial structure and networking in Sam50-deficient myotubes from mice and humans with wild-type (WT) myotubes. Furthermore, autophagosome 3D structure was assessed in human myotubes. Mitochondrial metabolic phenotypes were assessed using Gas Chromatography-Mass Spectrometry-based metabolomics to explore differential changes in WT and Sam50-deficient myotubes. The results revealed increased mitochondrial fragmentation and autophagosome formation in Sam50-deficient myotubes compared to controls. Metabolomic analysis indicated elevated metabolism of propanoate and several amino acids, including ß-Alanine, phenylalanine, and tyrosine, along with increased amino acid and fatty acid metabolism in Sam50-deficient myotubes. Furthermore, impairment of oxidative capacity was observed upon Sam50 ablation in both murine and human myotubes, as measured with the XF24 Seahorse Analyzer. Collectively, these findings support the critical role of Sam50 in establishing and maintaining mitochondrial integrity, cristae structure, and mitochondrial metabolism. By elucidating the impact of Sam50-deficiency, this study enhances our understanding of mitochondrial function in skeletal muscle.

19.
Nat Genet ; 55(6): 1009-1021, 2023 06.
Article in English | MEDLINE | ID: mdl-37291193

ABSTRACT

Aldosterone-producing adenomas (APAs) are the commonest curable cause of hypertension. Most have gain-of-function somatic mutations of ion channels or transporters. Herein we report the discovery, replication and phenotype of mutations in the neuronal cell adhesion gene CADM1. Independent whole exome sequencing of 40 and 81 APAs found intramembranous p.Val380Asp or p.Gly379Asp variants in two patients whose hypertension and periodic primary aldosteronism were cured by adrenalectomy. Replication identified two more APAs with each variant (total, n = 6). The most upregulated gene (10- to 25-fold) in human adrenocortical H295R cells transduced with the mutations (compared to wildtype) was CYP11B2 (aldosterone synthase), and biological rhythms were the most differentially expressed process. CADM1 knockdown or mutation inhibited gap junction (GJ)-permeable dye transfer. GJ blockade by Gap27 increased CYP11B2 similarly to CADM1 mutation. Human adrenal zona glomerulosa (ZG) expression of GJA1 (the main GJ protein) was patchy, and annular GJs (sequelae of GJ communication) were less prominent in CYP11B2-positive micronodules than adjacent ZG. Somatic mutations of CADM1 cause reversible hypertension and reveal a role for GJ communication in suppressing physiological aldosterone production.


Subject(s)
Adrenal Cortex Neoplasms , Adrenocortical Adenoma , Hyperaldosteronism , Hypertension , Humans , Aldosterone , Cytochrome P-450 CYP11B2 , Gap Junctions , Mutation , Cell Adhesion Molecule-1
SELECTION OF CITATIONS
SEARCH DETAIL
...