Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 13: 884113, 2022.
Article in English | MEDLINE | ID: mdl-35677037

ABSTRACT

Conventional treatment of chronic hepatitis B (CHB) is rarely curative due to the immunotolerant status of patients. RG7854 is an oral double prodrug of a toll-like receptor 7 (TLR7) agonist that is developed for the treatment of CHB. The therapeutic efficacy, host immune response, and safety of RG7854 were evaluated in the woodchuck model of CHB. Monotreatment with the two highest RG7854 doses and combination treatment with the highest RG7854 dose and entecavir (ETV) suppressed viral replication, led to loss of viral antigens, and induced seroconversion in responder woodchucks. Since viral suppression and high-titer antibodies persisted after treatment ended, this suggested that a sustained antiviral response (SVR) was induced by RG7854 in a subset of animals. The SVR rate, however, was comparable between both treatment regimens, suggesting that the addition of ETV did not enhance the therapeutic efficacy of RG7854 although it augmented the proliferation of blood cells in response to viral antigens and magnitude of antibody titers. The induction of interferon-stimulated genes in blood by RG7854/ETV combination treatment demonstrated on-target activation of TLR7. Together with the virus-specific blood cell proliferation and the transient elevations in liver enzymes and inflammation, this suggested that cytokine-mediated non-cytolytic and T-cell mediated cytolytic mechanisms contributed to the SVR, in addition to the virus-neutralizing effects by antibody-producing plasma cells. Both RG7854 regimens were not associated with treatment-limiting adverse effects but accompanied by dose-dependent, transient neutropenia and thrombocytopenia. The study concluded that finite, oral RG7854 treatment can induce a SVR in woodchucks that is based on the retrieval of antiviral innate and adaptive immune responses. This supports future investigation of the TLR7 agonist as an immunotherapeutic approach for achieving functional cure in patients with CHB.


Subject(s)
Antiviral Agents , Hepatitis B, Chronic , Marmota , Seroconversion , Toll-Like Receptor 7 , Animals , Antigens, Viral , Antiviral Agents/therapeutic use , Hepatitis B, Chronic/immunology , Hepatitis B, Chronic/veterinary , Toll-Like Receptor 7/agonists
2.
Front Immunol ; 12: 745802, 2021.
Article in English | MEDLINE | ID: mdl-34671360

ABSTRACT

Immune modulation for the treatment of chronic hepatitis B (CHB) has gained more traction in recent years, with an increasing number of compounds designed for targeting different host pattern recognition receptors (PRRs). These agonistic molecules activate the receptor signaling pathway and trigger an innate immune response that will eventually shape the adaptive immunity for control of chronic infection with hepatitis B virus (HBV). While definitive recognition of HBV nucleic acids by PRRs during viral infection still needs to be elucidated, several viral RNA sensing receptors, including toll-like receptors 7/8/9 and retinoic acid inducible gene-I-like receptors, are explored preclinically and clinically as possible anti-HBV targets. The antiviral potential of viral DNA sensing receptors is less investigated. In the present study, treatment of primary woodchuck hepatocytes generated from animals with CHB with HSV-60 or poly(dA:dT) agonists resulted in increased expression of interferon-gamma inducible protein 16 (IFI16) or Z-DNA-binding protein 1 (ZBP1/DAI) and absent in melanoma 2 (AIM2) receptors and their respective adaptor molecules and effector cytokines. Cytosolic DNA sensing receptor pathway activation correlated with a decline in woodchuck hepatitis virus (WHV) replication and secretion in these cells. Combination treatment with HSV-60 and poly(dA:dT) achieved a superior antiviral effect over monotreatment with either agonist that was associated with an increased expression of effector cytokines. The antiviral effect, however, could not be enhanced further by providing additional type-I interferons (IFNs) exogenously, indicating a saturated level of effector cytokines produced by these receptors following agonism. In WHV-uninfected woodchucks, a single poly(dA:dT) dose administered via liver-targeted delivery was well-tolerated and induced the intrahepatic expression of ZBP1/DAI and AIM2 receptors and their effector cytokines, IFN-ß and interleukins 1ß and 18. Receptor agonism also resulted in increased IFN-γ secretion of peripheral blood cells. Altogether, the effect on WHV replication and secretion following in vitro activation of IFI16, ZBP1/DAI, and AIM2 receptor pathways suggested an antiviral benefit of targeting more than one cytosolic DNA receptor. In addition, the in vivo activation of ZBP1/DAI and AIM2 receptor pathways in liver indicated the feasibility of the agonist delivery approach for future evaluation of therapeutic efficacy against HBV in woodchucks with CHB.


Subject(s)
Antiviral Agents/pharmacology , Hepatitis B Virus, Woodchuck/drug effects , Hepatitis B/drug therapy , Hepatocytes/drug effects , Poly dA-dT/pharmacology , Receptors, Cell Surface/agonists , Receptors, Pattern Recognition/agonists , Receptors, Virus/agonists , Animals , Antiviral Agents/therapeutic use , Cells, Cultured , Cytokines/biosynthesis , Cytokines/genetics , Cytosol/virology , Disease Models, Animal , Drug Evaluation, Preclinical , Drug Synergism , Hepatitis B/immunology , Hepatitis B/virology , Hepatitis B Virus, Woodchuck/physiology , Hepatocytes/virology , Immunity, Innate , Interferons/pharmacology , Liver/drug effects , Liver/virology , Marmota , Persistent Infection , Poly dA-dT/therapeutic use , Pteridines/pharmacology , Receptors, Cell Surface/biosynthesis , Receptors, Cell Surface/genetics , Receptors, Pattern Recognition/biosynthesis , Receptors, Pattern Recognition/genetics , Receptors, Virus/biosynthesis , Receptors, Virus/genetics , Virus Replication/drug effects
3.
Front Immunol ; 12: 713420, 2021.
Article in English | MEDLINE | ID: mdl-34367179

ABSTRACT

The antiviral property of small agonist compounds activating pattern recognition receptors (PRRs), including toll-like and RIG-I receptors, have been preclinically evaluated and are currently tested in clinical trials against chronic hepatitis B (CHB). The involvement of other PRRs in modulating hepatitis B virus infection is less known. Thus, woodchucks with resolving acute hepatitis B (AHB) after infection with woodchuck hepatitis virus (WHV) were characterized as animals with normal or delayed resolution based on their kinetics of viremia and antigenemia, and the presence and expression of various PRRs were determined in both outcomes. While PRR expression was unchanged immediately after infection, most receptors were strongly upregulated during resolution in liver but not in blood. Besides well-known PRRs, including TLR7/8/9 and RIG-I, other less-characterized receptors, such as IFI16, ZBP1/DAI, AIM2, and NLRP3, displayed comparable or even higher expression. Compared to normal resolution, a 3-4-week lag in peak receptor expression and WHV-specific B- and T-cell responses were noted during delayed resolution. This suggested that PRR upregulation in woodchuck liver occurs when the mounting WHV replication reaches a certain level, and that multiple receptors are involved in the subsequent induction of antiviral immune responses. Liver enzyme elevations occurred early during normal resolution, indicating a faster induction of cytolytic mechanisms than in delayed resolution, and correlated with an increased expression of NK-cell and CD8 markers and cytolytic effector molecules. The peak liver enzyme level, however, was lower during delayed resolution, but hepatic inflammation was more pronounced and associated with a higher expression of cytolytic markers. Further comparison of PRR expression revealed that most receptors were significantly reduced in woodchucks with established and progressing CHB, and several RNA sensors more so than DNA sensors. This correlated with a lower expression of receptor adaptor and effector molecules, suggesting that persistent, high-level WHV replication interferes with PRR activation and is associated with a diminished antiviral immunity based on the reduced expression of immune cell markers, and absent WHV-specific B- and T-cell responses. Overall, the differential expression of PRRs during resolution and persistence of WHV infection emphasizes their importance in the ultimate viral control during AHB that is impaired during CHB.


Subject(s)
Hepatitis B Virus, Woodchuck/immunology , Hepatitis B/veterinary , Immunity, Innate , Receptors, Immunologic/metabolism , Animals , Biomarkers , Disease Progression , Gene Expression , Hepatitis B, Chronic/veterinary , Inflammasomes/metabolism , Liver/immunology , Liver/metabolism , Liver/pathology , Liver/virology , Marmota , Transcription Factors/metabolism , Viral Load
4.
PLoS Pathog ; 15(12): e1008248, 2019 12.
Article in English | MEDLINE | ID: mdl-31869393

ABSTRACT

Viral and/or host factors that are directly responsible for the acute versus chronic outcome of hepatitis B virus (HBV) infection have not been identified yet. Information on immune response during the early stages of HBV infection in humans is mainly derived from blood samples of patients with acute hepatitis B (AHB), which are usually obtained after the onset of clinical symptoms. Features of intrahepatic immune response in these patients are less studied due to the difficulty of obtaining multiple liver biopsies. Woodchuck hepatitis virus (WHV) infection in woodchucks is a model for HBV infection in humans. In the present study, five adult woodchucks were experimentally infected with WHV and then followed for 18 weeks. Blood and liver tissues were frequently collected for assaying markers of WHV replication and innate and adaptive immune responses. Liver tissues were further analyzed for pathological changes and stained for important immune cell subsets and cytokines. The increase and subsequent decline of viral replication markers in serum and liver, the elicitation of antibodies against viral proteins, and the induction of virus-specific T-cell responses indicated eventual resolution of acute WHV infection in all animals. Intrahepatic innate immune makers stayed unchanged immediately after the infection, but increased markedly during resolution, as determined by changes in transcript levels. The presence of interferon-gamma and expression of natural killer (NK) cell markers suggested that a non-cytolytic response mechanism is involved in the initial viral control in liver. This was followed by the expression of T-cell markers and cytolytic effector molecules, indicating the induction of a cytolytic response mechanism. Parallel increases in regulatory T-cell markers suggested that this cell subset participates in the overall immune cell infiltration in liver and/or has a role in regulating AHB induced by the cytolytic response mechanism. Since the transcript levels of immune cell markers in blood, when detectable, were lower than in liver, and the kinetics, except for NK-cells and interferon-gamma, did not correlate well with their intrahepatic expression, this further indicated enrichment of immune cells within liver. Conclusion: The coordinated interplay of innate and adaptive immunity mediates viral clearance in the woodchuck animal model of HBV infection. The initial presence of NK-cell associated interferon-gamma response points to an important role of this cytokine in HBV resolution.


Subject(s)
Adaptive Immunity , Hepatitis B Virus, Woodchuck/pathogenicity , Hepatitis B/virology , Immunity, Innate , Killer Cells, Natural/virology , Marmota/virology , Aging , Animals , Hepatitis B Virus, Woodchuck/immunology , Interferon-gamma/metabolism , Killer Cells, Natural/metabolism , Liver/pathology , Liver/virology , T-Lymphocytes/immunology , T-Lymphocytes/virology , Virus Replication/immunology
5.
Methods Mol Biol ; 1540: 277-294, 2017.
Article in English | MEDLINE | ID: mdl-27975326

ABSTRACT

An estimated 350 million people are chronically infected with hepatitis B virus (HBV), and over one million people die each year due to HBV-associated liver diseases, such as cirrhosis and liver cancer. Current therapeutics for chronic HBV infection are limited to nucleos(t)ide analogs and interferon. These anti-HBV drugs in general reduce viral load and improve the long-term outcome of infection but very rarely lead to a cure. Thus, new therapies for chronic HBV infection need to be developed by utilizing liver cell lines and primary cultures and small laboratory animals capable of replicating HBV or surrogate hepadnaviruses for antiviral testing. Natural infection with woodchuck hepatitis virus (WHV), a hepadnavirus closely related to HBV, occurs in woodchucks. Chronic WHV infection has been established over decades as a suitable model for evaluating direct-acting antivirals as well as vaccines, vaccine adjuvants, and immunotherapeutics because animals are fully immunocompetent. Before HBV-specific compounds are applied to woodchucks, they are usually tested in primary woodchuck hepatocytes (PWHs) replicating WHV at high levels for confirming drug specificity against viral or host targets. Here we describe a protocol for the isolation of PWHs from liver of WHV-infected woodchucks, maintenance in culture, and use in assays for determining antiviral efficacy, safety, and associated host innate immune response of new experimental drugs. Exemplary assays were performed with the nucleoside analog, lamivudine, and the immunomodulator, interferon-alpha.


Subject(s)
Antiviral Agents/pharmacology , Hepatitis B Virus, Woodchuck/immunology , Hepatitis, Viral, Animal/immunology , Hepatitis, Viral, Animal/virology , Hepatocytes/drug effects , Hepatocytes/immunology , Immunity, Innate , Animals , Cell Separation , Cell Survival , Gene Expression Regulation/drug effects , Hepatitis, Viral, Animal/drug therapy , Hepatocytes/virology , Immunity, Innate/genetics , Immunologic Factors/pharmacology , Interferon-alpha/pharmacology , RNA, Viral , Virus Replication
7.
PLoS Pathog ; 11(9): e1005103, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26352406

ABSTRACT

Recombinant interferon-alpha (IFN-α) is an approved therapy for chronic hepatitis B (CHB), but the molecular basis of treatment response remains to be determined. The woodchuck model of chronic hepatitis B virus (HBV) infection displays many characteristics of human disease and has been extensively used to evaluate antiviral therapeutics. In this study, woodchucks with chronic woodchuck hepatitis virus (WHV) infection were treated with recombinant woodchuck IFN-α (wIFN-α) or placebo (n = 12/group) for 15 weeks. Treatment with wIFN-α strongly reduced viral markers in the serum and liver in a subset of animals, with viral rebound typically being observed following cessation of treatment. To define the intrahepatic cellular and molecular characteristics of the antiviral response to wIFN-α, we characterized the transcriptional profiles of liver biopsies taken from animals (n = 8-12/group) at various times during the study. Unexpectedly, this revealed that the antiviral response to treatment did not correlate with intrahepatic induction of the majority of IFN-stimulated genes (ISGs) by wIFN-α. Instead, treatment response was associated with the induction of an NK/T cell signature in the liver, as well as an intrahepatic IFN-γ transcriptional response and elevation of liver injury biomarkers. Collectively, these data suggest that NK/T cell cytolytic and non-cytolytic mechanisms mediate the antiviral response to wIFN-α treatment. In summary, by studying recombinant IFN-α in a fully immunocompetent animal model of CHB, we determined that the immunomodulatory effects, but not the direct antiviral activity, of this pleiotropic cytokine are most closely correlated with treatment response. This has important implications for the rational design of new therapeutics for the treatment of CHB.


Subject(s)
Hepatitis B Virus, Woodchuck/immunology , Hepatitis B, Chronic/veterinary , Immunity, Cellular/drug effects , Immunologic Factors/therapeutic use , Interferon-alpha/therapeutic use , Liver/metabolism , Transcription, Genetic , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , Antiviral Agents/metabolism , Antiviral Agents/therapeutic use , Biomarkers/blood , Biomarkers/metabolism , Biopsy , Dose-Response Relationship, Drug , Gene Expression Profiling , Hepatitis B Virus, Woodchuck/drug effects , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/metabolism , Hepatitis B, Chronic/virology , Immunologic Factors/administration & dosage , Immunologic Factors/genetics , Immunologic Factors/metabolism , Interferon-alpha/administration & dosage , Interferon-alpha/genetics , Interferon-alpha/metabolism , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Killer Cells, Natural/pathology , Liver/immunology , Liver/pathology , Liver/virology , Male , Marmota , Recombinant Proteins/administration & dosage , Recombinant Proteins/adverse effects , Recombinant Proteins/metabolism , Recombinant Proteins/therapeutic use , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/pathology , Viral Load/drug effects
8.
PLoS Negl Trop Dis ; 7(5): e2239, 2013.
Article in English | MEDLINE | ID: mdl-23738025

ABSTRACT

BACKGROUND: The impact of global climate change on the transmission dynamics of infectious diseases is the subject of extensive debate. The transmission of mosquito-borne viral diseases is particularly complex, with climatic variables directly affecting many parameters associated with the prevalence of disease vectors. While evidence shows that warmer temperatures often decrease the extrinsic incubation period of an arthropod-borne virus (arbovirus), exposure to cooler temperatures often predisposes disease vector mosquitoes to higher infection rates. RNA interference (RNAi) pathways are essential to antiviral immunity in the mosquito; however, few experiments have explored the effects of temperature on the RNAi machinery. METHODOLOGY/PRINCIPAL FINDINGS: We utilized transgenic "sensor" strains of Aedes aegypti to examine the role of temperature on RNA silencing. These "sensor" strains express EGFP only when RNAi is inhibited; for example, after knockdown of the effector proteins Dicer-2 (DCR-2) or Argonaute-2 (AGO-2). We observed an increase in EGFP expression in transgenic sensor mosquitoes reared at 18°C as compared with 28°C. Changes in expression were dependent on the presence of an inverted repeat with homology to a portion of the EGFP sequence, as transgenic strains lacking this sequence, the double stranded RNA (dsRNA) trigger for RNAi, showed no change in EGFP expression when reared at 18°C. Sequencing small RNAs in sensor mosquitoes reared at low temperature revealed normal processing of dsRNA substrates, suggesting the observed deficiency in RNAi occurs downstream of DCR-2. Rearing at cooler temperatures also predisposed mosquitoes to higher levels of infection with both chikungunya and yellow fever viruses. CONCLUSIONS/SIGNIFICANCE: This data suggest that microclimates, such as those present in mosquito breeding sites, as well as more general climactic variables may influence the dynamics of mosquito-borne viral diseases by affecting the antiviral immunity of disease vectors.


Subject(s)
Aedes/radiation effects , Disease Vectors , RNA Interference/radiation effects , Aedes/immunology , Aedes/virology , Animals , Cold Temperature , Gene Expression/radiation effects , Gene Knockdown Techniques , Genes, Reporter , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/genetics , Immunity, Innate/radiation effects
9.
PLoS Pathog ; 8(1): e1002470, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22241995

ABSTRACT

The natural maintenance cycles of many mosquito-borne pathogens require establishment of persistent non-lethal infections in the invertebrate host. The mechanism by which this occurs is not well understood, but we have previously shown that an antiviral response directed by small interfering RNAs (siRNAs) is important in modulating the pathogenesis of alphavirus infections in the mosquito. However, we report here that infection of mosquitoes with an alphavirus also triggers the production of another class of virus-derived small RNAs that exhibit many similarities to ping-pong-dependent piwi-interacting RNAs (piRNAs). However, unlike ping-pong-dependent piRNAs that have been described previously from repetitive elements or piRNA clusters, our work suggests production in the soma. We also present evidence that suggests virus-derived piRNA-like small RNAs are capable of modulating the pathogenesis of alphavirus infections in dicer-2 null mutant mosquito cell lines defective in viral siRNA production. Overall, our results suggest that a non-canonical piRNA pathway is present in the soma of vector mosquitoes and may be acting redundantly to the siRNA pathway to target alphavirus replication.


Subject(s)
Alphavirus Infections/metabolism , Alphavirus/physiology , Interspersed Repetitive Sequences , RNA, Small Interfering/biosynthesis , RNA, Viral/biosynthesis , Virus Replication/physiology , Alphavirus Infections/genetics , Animals , Anopheles , Cell Line , Insect Proteins/genetics , Insect Proteins/metabolism , RNA, Small Interfering/genetics , RNA, Viral/genetics , Ribonuclease III/genetics , Ribonuclease III/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...