Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Epileptic Disord ; 25(3): 371-382, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37186408

ABSTRACT

BACKGROUND: Loss of function mutations in PCDH19 gene causes an X-linked, infant-onset clustering epilepsy, associated with intellectual disability and autistic features. The unique pattern of inheritance includes random X-chromosome inactivation, which leads to pathological tissue mosaicism. Females carrying PCDH19 mutations are affected, while males have a normal phenotype. No cure is presently available for this disease. METHODS: Fibroblasts from a female patient carrying frameshift mutation were reprogrammed into human induced pluripotent stem cells (hiPSCs). To create a cell model of PCDH19-clustering epilepsy (PCDH19-CE) where both cell populations co-exist, we created mosaic neurons by mixing wild-type (WT) and mutated (mut) hiPSC clones, and differentiated them into mature neurons with overexpression of the transcriptional factor Neurogenin 2. RESULTS: We generated functional neurons from patient-derived iPSC using a rapid and efficient method of differentiation through overexpression of Neurogenin 2. Was revealed an accelerated maturation and higher arborisation in the mutated neurons, while the mosaic neurons showed the highest frequency of action potential firing and hyperexcitability features, compared to mutated and WT neurons. CONCLUSIONS: Our findings provide evidence that PCDH19 c.2133delG mutation affects proper metaphases with increased numbers of centrosomes in stem cells and accelerates neuronal maturation in premature cells. PCDH19 mosaic neurons showed elevated excitability, representing the situation in PCDH19-CE brain. We suggest Ngn2 hiPSC-derived PCDH19 neurons as an informative experimental tool for understanding the pathogenesis of PCDH19-CE and a suitable approach for use in targeted drug screening strategies.


Subject(s)
Epilepsy , Induced Pluripotent Stem Cells , Male , Humans , Female , Cadherins/genetics , Protocadherins , Epilepsy/genetics , Mutation , Cluster Analysis
2.
Mol Psychiatry ; 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36997609

ABSTRACT

Mutations in PCDH19 gene, which encodes protocadherin-19 (PCDH19), cause Developmental and Epileptic Encephalopathy 9 (DEE9). Heterogeneous loss of PCDH19 expression in neurons is considered a key determinant of the disorder; however, how PCDH19 mosaic expression affects neuronal network activity and circuits is largely unclear. Here, we show that the hippocampus of Pcdh19 mosaic mice is characterized by structural and functional synaptic defects and by the presence of PCDH19-negative hyperexcitable neurons. Furthermore, global reduction of network firing rate and increased neuronal synchronization have been observed in different limbic system areas. Finally, network activity analysis in freely behaving mice revealed a decrease in excitatory/inhibitory ratio and functional hyperconnectivity within the limbic system of Pcdh19 mosaic mice. Altogether, these results indicate that altered PCDH19 expression profoundly affects circuit wiring and functioning, and provide new key to interpret DEE9 pathogenesis.

3.
Cell Death Dis ; 13(7): 616, 2022 07 16.
Article in English | MEDLINE | ID: mdl-35842432

ABSTRACT

Interest in the function of ataxia-telangiectasia-mutated protein (ATM) is extensively growing as evidenced by preclinical studies that continuously link ATM with new intracellular pathways. Here, we exploited Atm+/- and Atm-/- mice and demonstrate that cognitive defects are rescued by the delivery of the antidepressant Fluoxetine (Fluox). Fluox increases levels of the chloride intruder NKCC1 exclusively at hippocampal level suggesting an ATM context-specificity. A deeper investigation of synaptic composition unveils increased Gluk-1 and Gluk-5 subunit-containing kainate receptors (KARs) levels in the hippocampus, but not in the cortex, of Atm+/- and Atm-/- mice. Analysis of postsynaptic fractions and confocal studies indicates that KARs are presynaptic while in vitro and ex vivo electrophysiology that are fully active. These changes are (i) linked to KCC2 activity, as the KCC2 blockade in Atm+/- developing neurons results in reduced KARs levels and (ii) developmental regulated. Indeed, the pharmacological inhibition of ATM kinase in adults produces different changes as identified by RNA-seq investigation. Our data display how ATM affects both inhibitory and excitatory neurotransmission, extending its role to a variety of neurological and psychiatric disorders.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , Hippocampus , Symporters , Animals , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Hippocampus/metabolism , Humans , Mice , Neurons/metabolism , Receptors, Kainic Acid , Symporters/genetics , Symporters/metabolism , Synaptic Transmission/physiology
4.
Cell Rep ; 39(8): 110857, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35613587

ABSTRACT

Protocadherin-19 (PCDH19) is a synaptic cell-adhesion molecule encoded by X-linked PCDH19, a gene linked with epilepsy. Here, we report a synapse-to-nucleus signaling pathway through which PCDH19 bridges neuronal activity with gene expression. In particular, we describe the NMDA receptor (NMDAR)-dependent proteolytic cleavage of PCDH19, which leads to the generation of a PCDH19 C-terminal fragment (CTF) able to enter the nucleus. We demonstrate that PCDH19 CTF associates with chromatin and with the chromatin remodeler lysine-specific demethylase 1 (LSD1) and regulates expression of immediate-early genes (IEGs). Our results are consistent with a model whereby PCDH19 favors maintenance of neuronal homeostasis via negative feedback regulation of IEG expression and provide a key to interpreting PCDH19-related hyperexcitability.


Subject(s)
Cadherins , Epilepsy , Genes, Immediate-Early , Protocadherins , Cadherins/genetics , Cadherins/metabolism , Chromatin/genetics , Chromatin/metabolism , Epilepsy/genetics , Epilepsy/metabolism , Gene Expression Regulation , Humans , Protocadherins/genetics , Protocadherins/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Signal Transduction
5.
Mol Neurobiol ; 58(12): 6092-6110, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34455539

ABSTRACT

Rho GTPases are a class of G-proteins involved in several aspects of cellular biology, including the regulation of actin cytoskeleton. The most studied members of this family are RHOA and RAC1 that act in concert to regulate actin dynamics. Recently, Rho GTPases gained much attention as synaptic regulators in the mammalian central nervous system (CNS). In this context, ARHGAP22 protein has been previously shown to specifically inhibit RAC1 activity thus standing as critical cytoskeleton regulator in cancer cell models; however, whether this function is maintained in neurons in the CNS is unknown. Here, we generated a knockout animal model for arhgap22 and provided evidence of its role in the hippocampus. Specifically, we found that ARHGAP22 absence leads to RAC1 hyperactivity and to an increase in dendritic spine density with defects in synaptic structure, molecular composition, and plasticity. Furthermore, arhgap22 silencing causes impairment in cognition and a reduction in anxiety-like behavior in mice. We also found that inhibiting RAC1 restored synaptic plasticity in ARHGAP22 KO mice. All together, these results shed light on the specific role of ARHGAP22 in hippocampal excitatory synapse formation and function as well as in learning and memory behaviors.


Subject(s)
Cognition/physiology , GTPase-Activating Proteins/metabolism , Glutamic Acid/metabolism , Hippocampus/metabolism , Neurons/metabolism , Neuropeptides/metabolism , Synapses/metabolism , rac1 GTP-Binding Protein/metabolism , Animals , Anxiety/genetics , Anxiety/metabolism , Behavior, Animal/physiology , Dendritic Spines/metabolism , GTPase-Activating Proteins/genetics , Maze Learning/physiology , Mice , Mice, Knockout , Motor Activity/physiology , Neuronal Plasticity/genetics , Neuropeptides/genetics , Synapses/genetics , Synaptosomes/metabolism , rac1 GTP-Binding Protein/genetics
6.
JCI Insight ; 6(3)2021 02 08.
Article in English | MEDLINE | ID: mdl-33373327

ABSTRACT

Impairment of the GABAergic system has been reported in epilepsy, autism, attention deficit hyperactivity disorder, and schizophrenia. We recently demonstrated that ataxia telangiectasia mutated (ATM) directly shapes the development of the GABAergic system. Here, we show for the first time to our knowledge how the abnormal expression of ATM affects the pathological condition of autism. We exploited 2 different animal models of autism, the methyl CpG binding protein 2-null (Mecp2y/-) mouse model of Rett syndrome and mice prenatally exposed to valproic acid, and found increased ATM levels. Accordingly, treatment with the specific ATM kinase inhibitor KU55933 (KU) normalized molecular, functional, and behavioral defects in these mouse models, such as (a) delayed GABAergic development, (b) hippocampal hyperexcitability, (c) low cognitive performances, and (d) social impairments. Mechanistically, we demonstrate that KU administration to WT hippocampal neurons leads to (a) higher early growth response 4 activity on Kcc2b promoter, (b) increased expression of Mecp2, and (c) potentiated GABA transmission. These results provide evidence and molecular substrates for the pharmacological development of ATM inhibition in autism spectrum disorders.


Subject(s)
Autism Spectrum Disorder/drug therapy , Animals , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/psychology , Behavior, Animal/drug effects , Behavior, Animal/physiology , DNA Repair , Disease Models, Animal , Female , GABAergic Neurons/drug effects , GABAergic Neurons/physiology , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Male , Methyl-CpG-Binding Protein 2/deficiency , Methyl-CpG-Binding Protein 2/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Morpholines/pharmacology , Pregnancy , Prenatal Exposure Delayed Effects , Protein Kinase Inhibitors/pharmacology , Pyrones/pharmacology , Rett Syndrome/drug therapy , Rett Syndrome/physiopathology , Rett Syndrome/psychology , Symporters/genetics , Symporters/metabolism , Valproic Acid/toxicity , K Cl- Cotransporters
7.
Neurobiol Dis ; 148: 105189, 2021 01.
Article in English | MEDLINE | ID: mdl-33227491

ABSTRACT

Mutations in the TM4SF2 gene, which encodes TSPAN7, cause a severe form of intellectual disability (ID) often comorbid with autism spectrum disorder (ASD). Recently, we found that TM4SF2 loss in mice affects cognition. Here, we report that Tm4sf2-/y mice, beyond an ID-like phenotype, display altered sociability, increased repetitive behaviors, anhedonic- and depressive-like states. Cognition relies on the integration of information from several brain areas. In this context, the lateral habenula (LHb) is strategically positioned to coordinate the brain regions involved in higher cognitive functions. Furthermore, in Tm4sf2-/y mice we found that LHb neurons present hypoexcitability, aberrant neuronal firing pattern and altered sodium and potassium voltage-gated ion channels function. Interestingly, we also found a reduced expression of voltage-gated sodium channel and a hyperactivity of the PKC-ERK pathway, a well-known modulator of ion channels activity, which might explain the functional phenotype showed by Tm4sf2-/y mice LHb neurons. These findings support Tm4sf2-/y mice as useful in modeling some ASD-like symptoms. Additionally, we can speculate that LHb functional alteration in Tm4sf2-/y mice might play a role in the disease pathophysiology.


Subject(s)
Habenula/metabolism , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Neurodevelopmental Disorders/genetics , Neurons/metabolism , Potassium Channels, Voltage-Gated/metabolism , Voltage-Gated Sodium Channels/metabolism , Anhedonia , Animals , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/physiopathology , Depression , Disease Models, Animal , Habenula/physiopathology , Intellectual Disability/genetics , Intellectual Disability/metabolism , Intellectual Disability/physiopathology , MAP Kinase Signaling System , Male , Mice , Mice, Knockout , Neurodevelopmental Disorders/metabolism , Neurodevelopmental Disorders/physiopathology , Protein Kinase C/metabolism , Social Behavior , Stereotyped Behavior
8.
Mol Neurobiol ; 57(12): 5336-5351, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32880860

ABSTRACT

PCDH19 encodes for protocadherin-19 (PCDH19), a cell-adhesion molecule of the cadherin superfamily preferentially expressed in the brain. PCDH19 mutations cause a neurodevelopmental syndrome named epileptic encephalopathy, early infantile, 9 (EIEE9) characterized by seizures associated with cognitive and behavioral deficits. We recently reported that PCDH19 binds the alpha subunits of GABAA receptors (GABAARs), modulating their surface availability and miniature inhibitory postsynaptic currents (mIPSCs). Here, we investigated whether PCDH19 regulatory function on GABAARs extends to the extrasynaptic receptor pool that mediates tonic current. In fact, the latter shapes neuronal excitability and network properties at the base of information processing. By combining patch-clamp recordings in whole-cell and cell-attached configurations, we provided a functional characterization of primary hippocampal neurons from embryonic rats of either sex expressing a specific PCDH19 short hairpin (sh)RNA. We first demonstrated that PCDH19 downregulation reduces GABAAR-mediated tonic current, evaluated by current shift and baseline noise analysis. Next, by single-channel recordings, we showed that PCDH19 regulates GABAARs kinetics without altering their conductance. In particular, GABAARs of shRNA-expressing neurons preferentially exhibit brief openings at the expense of long ones, thus displaying a flickering behavior. Finally, we showed that PCDH19 downregulation reduces the rheobase and increases the frequency of action potential firing, thus indicating neuronal hyperexcitability. These findings establish PCDH19 as a critical determinant of GABAAR-mediated tonic transmission and GABAARs gating, and provide the first mechanistic insights into PCDH19-related hyperexcitability and comorbidities.


Subject(s)
Action Potentials , Cadherins/metabolism , Epilepsy/metabolism , Epilepsy/physiopathology , Hippocampus/pathology , Neural Inhibition/physiology , Neurons/pathology , Receptors, GABA-A/metabolism , Animals , Down-Regulation , Kinetics , RNA, Small Interfering/metabolism , Rats, Sprague-Dawley
9.
Neuropsychopharmacology ; 45(10): 1645-1655, 2020 09.
Article in English | MEDLINE | ID: mdl-32353862

ABSTRACT

Homeostatic and hedonic pathways distinctly interact to control food intake. Dysregulations of circuitries controlling hedonic feeding may disrupt homeostatic mechanisms and lead to eating disorders. The anorexigenic peptides nucleobindin-2 (NUCB2)/nesfatin-1 may be involved in the interaction of these pathways. The endogenous levels of this peptide are regulated by the feeding state, with reduced levels following fasting and normalized by refeeding. The fasting state is associated with biochemical and behavioral adaptations ultimately leading to enhanced sensitization of reward circuitries towards food reward. Although NUCB2/nesfatin-1 is expressed in reward-related brain areas, its role in regulating motivation and preference for nutrients has not yet been investigated. We here report that both dopamine and GABA neurons express NUCB2/nesfatin-1 in the VTA. Ex vivo electrophysiological recordings show that nesfatin-1 hyperpolarizes dopamine, but not GABA, neurons of the VTA by inducing an outward potassium current. In vivo, central administration of nesfatin-1 reduces motivation for food reward in a high-effort condition, sucrose intake and preference. We next adopted a 2-bottle choice procedure, whereby the reward value of sucrose was compared with that of a reference stimulus (sucralose + optogenetic stimulation of VTA dopamine neurons) and found that nesfatin-1 fully abolishes the fasting-induced increase in the reward value of sucrose. These findings indicate that nesfatin-1 reduces energy intake by negatively modulating dopaminergic neuron activity and, in turn, hedonic aspects of food intake. Since nesfatin-1´s actions are preserved in conditions of leptin resistance, the present findings render the NUCB2/nesfatin-1 system an appealing target for the development of novel therapeutical treatments towards obesity.


Subject(s)
Calcium-Binding Proteins , DNA-Binding Proteins , DNA-Binding Proteins/metabolism , Motivation , Nerve Tissue Proteins/metabolism , Nucleobindins , Reward
10.
Cell Rep ; 29(5): 1130-1146.e8, 2019 10 29.
Article in English | MEDLINE | ID: mdl-31665629

ABSTRACT

Tetraspanins are a class of evolutionarily conserved transmembrane proteins with 33 members identified in mammals that have the ability to organize specific membrane domains, named tetraspanin-enriched microdomains (TEMs). Despite the relative abundance of different tetraspanins in the CNS, few studies have explored their role at synapses. Here, we investigate the function of TSPAN5, a member of the tetraspanin superfamily for which mRNA transcripts are found at high levels in the mouse brain. We demonstrate that TSPAN5 is localized in dendritic spines of pyramidal excitatory neurons and that TSPAN5 knockdown induces a dramatic decrease in spine number because of defects in the spine maturation process. Moreover, we show that TSPAN5 interacts with the postsynaptic adhesion molecule neuroligin-1, promoting its correct surface clustering. We propose that membrane compartmentalization by tetraspanins represents an additional mechanism for regulating excitatory synapses.


Subject(s)
Cell Adhesion Molecules, Neuronal/metabolism , Dendritic Spines/metabolism , Membrane Microdomains/metabolism , Tetraspanins/chemistry , Tetraspanins/metabolism , Animals , Gene Knockdown Techniques , HEK293 Cells , HeLa Cells , Hippocampus/metabolism , Humans , Mice, Inbred C57BL , Protein Binding , Pyramidal Cells/metabolism , Rats, Wistar , Synapses/metabolism
11.
Sci Rep ; 8(1): 7254, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29740022

ABSTRACT

The small-GTPase Rac1 is a key molecular regulator linking extracellular signals to actin cytoskeleton dynamics. Loss-of-function mutations in RAC1 and other genes of the Rac signaling pathway have been implicated in the pathogenesis of Intellectual Disability (ID). The Rac1 activity is negatively controlled by GAP proteins, however the effect of Rac1 hyperactivity on neuronal networking in vivo has been poorly studied. ArhGAP15 is a Rac-specific negative regulator, expressed in the main subtypes of pyramidal cortical neurons. In the absence of ArhGAP15, cortical pyramidal neurons show defective neuritogenesis, delayed axonal elongation, reduced dendritic branching, both in vitro and in vivo. These phenotypes are associated with altered actin dynamics at the growth cone due to increased activity of the PAK-LIMK pathway and hyperphosphorylation of ADF/cofilin. These results can be explained by shootin1 hypo-phosphorylation and uncoupling with the adhesion system. Functionally, ArhGAP15-/- mice exhibit decreased synaptic density, altered electroencephalographic rhythms and cognitive deficits. These data suggest that both hypo- and hyperactivation of the Rac pathway due to mutations in Rac1 regulators can result in conditions of ID, and that a tight regulation of Rac1 activity is required to attain the full complexity of the cortical networks.


Subject(s)
Dendrites/genetics , Neurites/physiology , Neuropeptides/genetics , Pyramidal Cells/physiology , rac1 GTP-Binding Protein/genetics , Actins/genetics , Actins/metabolism , Animals , Axons/metabolism , GTPase-Activating Proteins/genetics , Growth Cones/metabolism , Loss of Function Mutation/genetics , Mice , Neurites/metabolism , Phosphorylation , Pyramidal Cells/metabolism , Signal Transduction/genetics
12.
Mol Cell Neurosci ; 91: 76-81, 2018 09.
Article in English | MEDLINE | ID: mdl-29631019

ABSTRACT

Tetraspanins are a family of proteins largely expressed in mammals. These proteins share very similar structures and are involved in several biological processes spanning from the immune system to cancer growth regulation. Moreover, tetraspanins are scaffold proteins that are able to interact with each other and with a subset of proteins involved in the regulation of the central nervous system, including synapse formation, function and plasticity. In this review, we will focus on the analysis of the literature on tetraspanins, highlighting their involvement in synapse formation and function through direct or indirect modulation of synaptic proteins.


Subject(s)
Synapses/metabolism , Tetraspanins/metabolism , Animals , Humans , Neuronal Plasticity , Protein Transport , Receptors, Neurotransmitter/metabolism , Synapses/physiology , Tetraspanins/genetics
13.
Prog Neuropsychopharmacol Biol Psychiatry ; 84(Pt B): 328-342, 2018 06 08.
Article in English | MEDLINE | ID: mdl-28935587

ABSTRACT

Neurodevelopmental disorders (NDDs) are a group of diseases whose symptoms arise during childhood or adolescence and that impact several higher cognitive functions such as learning, sociability and mood. Accruing evidence suggests that a shared pathogenic mechanism underlying these diseases is the dysfunction of glutamatergic synapses. We summarize present knowledge on autism spectrum disorders (ASD), intellectual disability (ID), Down syndrome (DS), Rett syndrome (RS) and attention-deficit hyperactivity disorder (ADHD), highlighting the involvement of glutamatergic synapses and receptors in these disorders. The most commonly shared defects involve α-amino-3-hydroxy-5-methyl- 4-isoxazole propionic acid receptors (AMPARs), N-methyl-d-aspartate receptors (NMDARs) and metabotropic glutamate receptors (mGluRs), whose functions are strongly linked to synaptic plasticity, affecting both cell-autonomous features as well as circuit formation. Moreover, the major scaffolding proteins and, thus, the general structure of the synapse are often deregulated in neurodevelopmental disorders, which is not surprising considering their crucial role in the regulation of glutamate receptor positioning and functioning. This convergence of defects supports the definition of neurodevelopmental disorders as a continuum of pathological manifestations, suggesting that glutamatergic synapses could be a therapeutic target to ameliorate patient symptomatology.


Subject(s)
Neurodevelopmental Disorders/metabolism , Neurodevelopmental Disorders/pathology , Receptors, Glutamate/metabolism , Synapses/pathology , Animals , Humans
14.
Cereb Cortex ; 27(11): 5369-5384, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28968657

ABSTRACT

Intellectual disability affects 2-3% of the world's population and typically begins during childhood, causing impairments in social skills and cognitive abilities. Mutations in the TM4SF2 gene, which encodes the TSPAN7 protein, cause a severe form of intellectual disability, and currently, no therapy is able to ameliorate this cognitive impairment. We previously reported that, in cultured neurons, shRNA-mediated down-regulation of TSPAN7 affects AMPAR trafficking by enhancing PICK1-GluA2 interaction, thereby increasing the intracellular retention of AMPAR. Here, we found that loss of TSPAN7 function in mice causes alterations in hippocampal excitatory synapse structure and functionality as well as cognitive impairment. These changes occurred along with alterations in AMPAR expression levels. We also found that interfering with PICK1-GluA2 binding restored synaptic function in Tm4sf2-/y mice. Moreover, potentiation of AMPAR activity via the administration of the ampakine CX516 reverted the neurological phenotype observed in Tm4sf2-/y mice, suggesting that pharmacological modulation of AMPAR may represent a new approach for treating patients affected by TM4SF2 mutations and intellectual disability.


Subject(s)
Excitatory Amino Acid Agents/pharmacology , Intellectual Disability/drug therapy , Intellectual Disability/metabolism , Membrane Proteins/deficiency , Nerve Tissue Proteins/deficiency , Psychotropic Drugs/pharmacology , Receptors, AMPA/metabolism , Allosteric Regulation , Animals , Carrier Proteins/metabolism , Cell Cycle Proteins , Disease Models, Animal , Gene Expression/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/ultrastructure , Intellectual Disability/pathology , Male , Membrane Proteins/genetics , Mice, Inbred C57BL , Mice, Transgenic , Nerve Tissue Proteins/genetics , Nuclear Proteins/metabolism , Protein Binding/drug effects , Synapses/drug effects , Synapses/metabolism , Synapses/ultrastructure , Synaptic Transmission/drug effects , Synaptic Transmission/physiology , Tissue Culture Techniques
15.
Nat Commun ; 8: 14536, 2017 03 06.
Article in English | MEDLINE | ID: mdl-28262662

ABSTRACT

Shrm4, a protein expressed only in polarized tissues, is encoded by the KIAA1202 gene, whose mutations have been linked to epilepsy and intellectual disability. However, a physiological role for Shrm4 in the brain is yet to be established. Here, we report that Shrm4 is localized to synapses where it regulates dendritic spine morphology and interacts with the C terminus of GABAB receptors (GABABRs) to control their cell surface expression and intracellular trafficking via a dynein-dependent mechanism. Knockdown of Shrm4 in rat severely impairs GABABR activity causing increased anxiety-like behaviour and susceptibility to seizures. Moreover, Shrm4 influences hippocampal excitability by modulating tonic inhibition in dentate gyrus granule cells, in a process involving crosstalk between GABABRs and extrasynaptic δ-subunit-containing GABAARs. Our data highlights a role for Shrm4 in synaptogenesis and in maintaining GABABR-mediated inhibition, perturbation of which may be responsible for the involvement of Shrm4 in cognitive disorders and epilepsy.


Subject(s)
Hippocampus/metabolism , Microfilament Proteins/genetics , Nerve Tissue Proteins/genetics , Neurons/metabolism , Receptors, GABA-A/genetics , Receptors, GABA-B/genetics , Synaptic Transmission/genetics , Animals , Dentate Gyrus/metabolism , Dentate Gyrus/pathology , Dentate Gyrus/ultrastructure , Embryo, Mammalian , Epilepsy/genetics , Epilepsy/metabolism , Epilepsy/pathology , Gene Expression Regulation , HEK293 Cells , Hippocampus/pathology , Hippocampus/ultrastructure , Humans , Injections, Intraventricular , Intellectual Disability/genetics , Intellectual Disability/metabolism , Intellectual Disability/pathology , Microfilament Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neural Inhibition , Neurogenesis/genetics , Neurons/pathology , Neurons/ultrastructure , Primary Cell Culture , Rats , Rats, Wistar , Receptor Cross-Talk , Receptors, GABA-A/metabolism , Receptors, GABA-B/metabolism , Synapses/metabolism , Synapses/pathology , Synapses/ultrastructure
16.
Cereb Cortex ; 27(3): 2226-2248, 2017 03 01.
Article in English | MEDLINE | ID: mdl-27005990

ABSTRACT

Alterations in the balance of inhibitory and excitatory synaptic transmission have been implicated in the pathogenesis of neurological disorders such as epilepsy. Eukaryotic elongation factor 2 kinase (eEF2K) is a highly regulated, ubiquitous kinase involved in the control of protein translation. Here, we show that eEF2K activity negatively regulates GABAergic synaptic transmission. Indeed, loss of eEF2K increases GABAergic synaptic transmission by upregulating the presynaptic protein Synapsin 2b and α5-containing GABAA receptors and thus interferes with the excitation/inhibition balance. This cellular phenotype is accompanied by an increased resistance to epilepsy and an impairment of only a specific hippocampal-dependent fear conditioning. From a clinical perspective, our results identify eEF2K as a potential novel target for antiepileptic drugs, since pharmacological and genetic inhibition of eEF2K can revert the epileptic phenotype in a mouse model of human epilepsy.


Subject(s)
Elongation Factor 2 Kinase/metabolism , Epilepsy/enzymology , Neurons/enzymology , Synaptic Transmission/physiology , Animals , Cells, Cultured , Cerebral Cortex/drug effects , Cerebral Cortex/enzymology , Cerebral Cortex/pathology , Conditioning, Psychological/physiology , Disease Models, Animal , Elongation Factor 2 Kinase/antagonists & inhibitors , Elongation Factor 2 Kinase/genetics , Epilepsy/pathology , Fear/physiology , Hippocampus/drug effects , Hippocampus/enzymology , Hippocampus/pathology , Mice, Inbred C57BL , Mice, Knockout , Neural Inhibition/drug effects , Neural Inhibition/physiology , Neurons/drug effects , Neurons/pathology , Rats, Sprague-Dawley , Receptors, GABA-A/metabolism , Synapsins/genetics , Synapsins/metabolism , Synaptic Transmission/drug effects , gamma-Aminobutyric Acid/metabolism
17.
Hum Mol Genet ; 25(23): 5198-5211, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27742778

ABSTRACT

Among the X-linked genes associated with intellectual disability, Oligophrenin-1 (OPHN1) encodes for a Rho GTPase-activating protein, a key regulator of several developmental processes, such as dendrite and spine formation and synaptic activity. Inhibitory interneurons play a key role in the development and function of neuronal circuits. Whether a mutation of OPHN1 can affect morphology and synaptic properties of inhibitory interneurons remains poorly understood. To address these open questions, we studied in a well-established mouse model of X-linked intellectual disability, i.e. a line of mice carrying a null mutation of OPHN1, the development and function of adult generated inhibitory interneurons in the olfactory bulb. Combining quantitative morphological analysis and electrophysiological recordings we found that the adult generated inhibitory interneurons were dramatically reduced in number and exhibited a higher proportion of filopodia-like spines, with the consequences on their synaptic function, in OPHN1 ko mice. Furthermore, we found that olfactory behaviour was perturbed in OPHN1 ko mice. Chronic treatment with a Rho kinase inhibitor rescued most of the defects of the newly generated neurons. Altogether, our data indicated that OPHN1 plays a key role in regulating the number, morphology and function of adult-born inhibitory interneurons and contributed to identify potential therapeutic targets.


Subject(s)
Cytoskeletal Proteins/genetics , GTPase-Activating Proteins/genetics , Genetic Diseases, X-Linked/genetics , Intellectual Disability/genetics , Nuclear Proteins/genetics , Animals , Dendrites/drug effects , Dendrites/genetics , Dendrites/metabolism , Disease Models, Animal , Enzyme Inhibitors/administration & dosage , Genetic Diseases, X-Linked/drug therapy , Genetic Diseases, X-Linked/pathology , Humans , Intellectual Disability/drug therapy , Intellectual Disability/pathology , Interneurons/drug effects , Interneurons/pathology , Mice, Knockout , Olfactory Bulb/drug effects , Olfactory Bulb/pathology , rho-Associated Kinases/antagonists & inhibitors , rho-Associated Kinases/genetics
18.
Metabolomics ; 12: 133, 2016.
Article in English | MEDLINE | ID: mdl-27499721

ABSTRACT

INTRODUCTION: Neurons have a very high energy requirement, and their metabolism is tightly regulated to ensure delivery of adequate substrate to sustain neuronal activity and neuroplastic changes. The mechanisms underlying the regulation of neuronal metabolism, however, are not completely clear. OBJECTIVE: The objective of this study was to investigate the central carbon metabolism in neurons, in order to identify the regulatory pathways governing neuronal anabolism and catabolism. METHODS: Here we first have applied MS-based endometabolomics to elucidate the metabolic dynamics in cultured hippocampal primary neurons. Using nanoLC-ESI-LTQ Orbitrap MS approach followed by statistical analysis, we measure the dynamics of uniformly labeled 13C-glucose entering neurons. We adapted the method by coupling offline patch-clamp setup with MS to confirm findings in vivo. RESULTS: According to non-parametric statistical analysis of metabolic dynamics, in cultured hippocampal neurons, the glycerol phosphate shuttle is active and correlates with the metabolic flux in the pentose phosphate pathway. In the hippocampus, glycerol-3-phosphate biosynthesis was activated in response to long-term potentiation together with the upregulation of glycolysis and the TCA cycle, but was inactive or silenced in basal conditions. CONCLUSIONS: We identified the biosynthesis of glycerol-3-phosphate as a key regulator in mechanisms implicated in learning and memory. Notably, defects in enzymes linked with the glycerol phosphate shuttle have been implicated in neurological disorders and intellectual disability. These results could improve our understanding of the general mechanisms of learning and memory and facilitate the development of novel therapies for metabolic disorders linked with intellectual disability.

19.
Cereb Cortex ; 26(10): 3879-88, 2016 10.
Article in English | MEDLINE | ID: mdl-27166172

ABSTRACT

The capacity to guarantee the proper excitatory/inhibitory balance is one of the most critical steps during early development responsible for the correct brain organization, function, and plasticity. GABAergic neurons guide this process leading to the right structural organization, brain circuitry, and neuronal firing. Here, we identified the ataxia telangiectasia mutated (ATM), a serine/threonine protein kinase linked to DNA damage response, as crucial in regulating neurotransmission. We found that reduced levels of ATM in the hippocampal neuronal cultures produce an excitatory/inhibitory unbalance toward inhibition as indicated by the higher frequency of miniature inhibitory postsynaptic current events and an increased number of GABAergic synapses. In vivo, the increased inhibition still persists and, even if a higher excitation is also present, a reduced neuronal excitability is found as indicated by the lower action potential frequency generated in response to high-current intensity stimuli. Finally, we found an elevated extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in heterozygous hippocampi associated with lower expression levels of the ERK1/2 phosphatase PP1. Given that the neurodegenerative condition associated with genetic mutations in the Atm gene, ataxia telangiectasia, presents a variable phenotype with impairment in cognition, our molecular findings provide a logical frame for a more clear comprehension of cognitive defects in the pathology, opening to novel therapeutic strategies.


Subject(s)
Hippocampus/metabolism , Neurons/metabolism , Synaptic Transmission/physiology , gamma-Aminobutyric Acid/metabolism , Animals , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Cells, Cultured , Extracellular Signal-Regulated MAP Kinases/metabolism , Hippocampus/cytology , Hippocampus/embryology , Mice, Inbred C57BL , Mice, Transgenic , Neural Inhibition/physiology , Neurons/cytology , Phosphorylation , Symporters/metabolism , Tissue Culture Techniques , gamma-Aminobutyric Acid/administration & dosage , K Cl- Cotransporters
20.
Front Mol Neurosci ; 9: 1, 2016.
Article in English | MEDLINE | ID: mdl-26834556

ABSTRACT

Myosin IXa (Myo9a) is a motor protein that is highly expressed in the brain. However, the role of Myo9a in neurons remains unknown. Here, we investigated Myo9a function in hippocampal synapses. In rat hippocampal neurons, Myo9a localizes to the postsynaptic density (PSD) and binds the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) GluA2 subunit. Myo9a(+/-) mice displayed a thicker PSD and increased levels of PSD95 and surface AMPAR expression. Furthermore, synaptic transmission, long-term potentiation (LTP) and cognitive functions were impaired in Myo9a(+/-) mice. Together, these results support a key role for Myo9a in controlling the molecular structure and function of hippocampal synapses.

SELECTION OF CITATIONS
SEARCH DETAIL
...