Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Front Oncol ; 13: 1152158, 2023.
Article in English | MEDLINE | ID: mdl-37251915

ABSTRACT

Objective: This study aimed to develop a clinical-radiomic model based on radiomic features extracted from digital breast tomosynthesis (DBT) images and clinical factors that may help to discriminate between benign and malignant breast lesions. Materials and methods: A total of 150 patients were included in this study. DBT images acquired in the setting of a screening protocol were used. Lesions were delineated by two expert radiologists. Malignity was always confirmed by histopathological data. The data were randomly divided into training and validation set with an 80:20 ratio. A total of 58 radiomic features were extracted from each lesion using the LIFEx Software. Three different key methods of feature selection were implemented in Python: (1) K best (KB), (2) sequential (S), and (3) Random Forrest (RF). A model was therefore produced for each subset of seven variables using a machine-learning algorithm, which exploits the RF classification based on the Gini index. Results: All three clinical-radiomic models show significant differences (p < 0.05) between malignant and benign tumors. The area under the curve (AUC) values of the models obtained with three different feature selection methods were 0.72 [0.64,0.80], 0.72 [0.64,0.80] and 0.74 [0.66,0.82] for KB, SFS, and RF, respectively. Conclusion: The clinical-radiomic models developed by using radiomic features from DBT images showed a good discriminating power and hence may help radiologists in breast cancer tumor diagnoses already at the first screening.

2.
Radiat Prot Dosimetry ; 199(8-9): 962-969, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37225203

ABSTRACT

A system for internal and voluntary reporting of abnormal events in a Nuclear Medicine Therapy Unit is described. This system is based on the Internet of Things and is composed of an application for mobile devices and a wireless network of detectors. The application is addressed to healthcare professionals and is intended to be a user-friendly tool to make the reporting procedure little laborious. The network of detectors allows for a real-time measurement of the dose distribution in the patient's room. The staff was involved in all stages, from the design of the dosimetry system and mobile application up to their final testing. Face-to-face interviews were carried out with 24 operators in different roles in the Unit (radiation protection experts, physicians, physicists, nuclear medicine technicians and nurses). The preliminary results of the interviews and the current state of development of the application and the detection network will be described.


Subject(s)
Nuclear Medicine , Radiation Protection , Humans , Radionuclide Imaging , Health Personnel , Internet
SELECTION OF CITATIONS
SEARCH DETAIL