Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Differentiation ; 107: 1-10, 2019.
Article in English | MEDLINE | ID: mdl-30927641

ABSTRACT

Androgen signaling is essential for prostate development, morphogenesis, and regeneration. Emerging evidence also indicates a regulatory role of Notch signaling in prostate development, differentiation, and growth. However, the collaborative regulatory mechanisms of androgen and Notch signaling during prostate development, growth, and regeneration are largely unknown. Hairy and Enhancer of Split 1 (Hes1) is a transcriptional regulator of Notch signaling pathways, and its expression is responsive to Notch signaling. Hes1-expressing cells have been shown to possess the regenerative capability to repopulate a variety of adult tissues. In this study, we developed new mouse models to directly assess the role of the androgen receptor in prostatic Hes1-expressing cells. Selective deletion of AR expression in embryonic Hes1-expressing cells impeded early prostate development both in vivo and in tissue xenograft experiments. Prepubescent deletion of AR expression in Hes1-expressing cells resulted in prostate glands containing abnormalities in cell morphology and gland architecture. A population of castration-resistant Hes1-expressing cells was revealed in the adult prostate, with the ability to repopulate prostate epithelium following androgen supplementation. Deletion of AR in Hes1-expressing cells diminishes their regenerative ability. These lines of evidence demonstrate a critical role for the AR in Notch-responsive cells during the course of prostate development, morphogenesis, and regeneration, and implicate a mechanism underlying interaction between the androgen and Notch signaling pathways in the mouse prostate.


Subject(s)
Prostate/physiology , Receptors, Notch/metabolism , Regeneration , Transcription Factor HES-1 , Androgens/metabolism , Animals , Male , Mice , Models, Animal , Prostate/embryology , Receptors, Androgen/metabolism , Signal Transduction , Transcription Factor HES-1/biosynthesis , Transcription Factor HES-1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...