Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Nat Commun ; 11(1): 965, 2020 02 19.
Article in English | MEDLINE | ID: mdl-32075961

ABSTRACT

The sarco-endoplasmic reticulum (SR/ER) plays an important role in the development and progression of many heart diseases. However, many aspects of its structural organization remain largely unknown, particularly in cells with a highly differentiated SR/ER network. Here, we report a cardiac enriched, SR/ER membrane protein, REEP5 that is centrally involved in regulating SR/ER organization and cellular stress responses in cardiac myocytes. In vitro REEP5 depletion in mouse cardiac myocytes results in SR/ER membrane destabilization and luminal vacuolization along with decreased myocyte contractility and disrupted Ca2+ cycling. Further, in vivo CRISPR/Cas9-mediated REEP5 loss-of-function zebrafish mutants show sensitized cardiac dysfunction upon short-term verapamil treatment. Additionally, in vivo adeno-associated viral (AAV9)-induced REEP5 depletion in the mouse demonstrates cardiac dysfunction. These results demonstrate the critical role of REEP5 in SR/ER organization and function as well as normal heart function and development.


Subject(s)
Heart/physiopathology , Membrane Proteins/deficiency , Sarcoplasmic Reticulum/pathology , Animals , Calcium/metabolism , Cells, Cultured , Endoplasmic Reticulum Stress , Gene Knockout Techniques , Gene Silencing , Heart/growth & development , Heart Diseases/metabolism , Heart Diseases/pathology , Heart Diseases/physiopathology , Humans , Intracellular Membranes/metabolism , Intracellular Membranes/pathology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Myocardial Contraction , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Sarcoplasmic Reticulum/genetics , Sarcoplasmic Reticulum/metabolism , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...