Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroscience ; 413: 108-122, 2019 08 10.
Article in English | MEDLINE | ID: mdl-31228588

ABSTRACT

One deficit associated with schizophrenia (SZ) is the reduced ability to distinguish self-caused sensations from those due to external sources. This reduced sense of agency (SoA, subjective awareness of control over one's actions) is hypothesized to result from a diminished utilization of internal monitoring signals of self-movement (i.e., efference copy) which subsequently impairs forming and utilizing sensory prediction errors (differences between the predicted and actual sensory consequences resulting from movement). Another important function of these internal monitoring signals is the facilitation of higher-order mechanisms related to motor learning and control. Current predictive-coding models of adaptation postulate that the sensory consequences of motor commands are predicted based on internal action-related information, and that ownership and control of motor behavior is modified in various contexts based on predictive processing. Here, we investigated the connections between SoA and motor adaptation. Schizophrenia patients (SZP, N=30) and non-psychiatric control subjects (HC, N=31) adapted to altered movement visual feedback and applied the motor recalibration to untested contexts (i.e., the spatial generalization). Although adaptation was similar for SZP and controls, the extent of generalization was significantly less for SZP; movement trajectories made by patients to the furthest untrained target (135o) before and after adaptation were largely indistinguishable. Interestingly, deficits in generalization were correlated with positive symptoms of psychosis in SZP (e.g., hallucinations). Generalization was also associated with measures of SoA across both SZP and HC, emphasizing the role action awareness plays in motor behavior, and suggesting that misattributing agency, even in HC, manifests in abnormal motor performance.


Subject(s)
Adaptation, Psychological , Generalization, Psychological , Psychomotor Performance , Schizophrenic Psychology , Spatial Behavior , Visual Perception , Female , Humans , Male , Middle Aged , Motor Activity , Rotation , Schizophrenia/drug therapy , Space Perception , Theory of Mind
2.
J Neurophysiol ; 118(4): 2435-2447, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28768744

ABSTRACT

Movement adaptation in response to systematic motor perturbations exhibits distinct spatial and temporal properties. These characteristics are typically studied in isolation, leaving the interaction largely unknown. Here we examined how the temporal decay of visuomotor adaptation influences the spatial generalization of the motor recalibration. First, we quantified the extent to which adaptation decayed over time. Subjects reached to a peripheral target, and a rotation was applied to the visual feedback of the unseen motion. The retention of this adaptation over different delays (0-120 s) 1) decreased by 29.0 ± 6.8% at the longest delay and 2) was represented by a simple exponential, with a time constant of 22.5 ± 5.6 s. On the basis of this relationship we simulated how the spatial generalization of adaptation would change with delay. To test this directly, we trained additional subjects with the same perturbation and assessed transfer to 19 different locations (spaced 15° apart, symmetric around the trained location) and examined three delays (~4, 12, and 25 s). Consistent with the simulation, we found that generalization around the trained direction (±15°) significantly decreased with delay and distance, while locations >60° displayed near-constant spatiotemporal transfer. Intermediate distances (30° and 45°) showed a difference in transfer across space, but this amount was approximately constant across time. Interestingly, the decay at the trained direction was faster than that based purely on time, suggesting that the spatial transfer of adaptation is modified by concurrent passive (time dependent) and active (movement dependent) processes.NEW & NOTEWORTHY Short-term motor adaptation exhibits distinct spatial and temporal characteristics. Here we investigated the interaction of these features, utilizing a simple motor adaptation paradigm (recalibration of reaching arm movements in response to rotated visual feedback). We examined the changes in the spatial generalization of motor adaptation for different temporal manipulations and report that the spatiotemporal generalization of motor adaptation is generally local and is influenced by both passive (time dependent) and active (movement dependent) learning processes.


Subject(s)
Feedback, Physiological , Generalization, Psychological , Movement , Visual Perception , Adult , Arm/innervation , Arm/physiology , Brain/physiology , Female , Humans , Male , Time
3.
IEEE Trans Biomed Eng ; 63(8): 1687-98, 2016 08.
Article in English | MEDLINE | ID: mdl-26560865

ABSTRACT

Surface electromyography (sEMG) has been the predominant method for sensing electrical activity for a number of applications involving muscle-computer interfaces, including myoelectric control of prostheses and rehabilitation robots. Ultrasound imaging for sensing mechanical deformation of functional muscle compartments can overcome several limitations of sEMG, including the inability to differentiate between deep contiguous muscle compartments, low signal-to-noise ratio, and lack of a robust graded signal. The objective of this study was to evaluate the feasibility of real-time graded control using a computationally efficient method to differentiate between complex hand motions based on ultrasound imaging of forearm muscles. Dynamic ultrasound images of the forearm muscles were obtained from six able-bodied volunteers and analyzed to map muscle activity based on the deformation of the contracting muscles during different hand motions. Each participant performed 15 different hand motions, including digit flexion, different grips (i.e., power grasp and pinch grip), and grips in combination with wrist pronation. During the training phase, we generated a database of activity patterns corresponding to different hand motions for each participant. During the testing phase, novel activity patterns were classified using a nearest neighbor classification algorithm based on that database. The average classification accuracy was 91%. Real-time image-based control of a virtual hand showed an average classification accuracy of 92%. Our results demonstrate the feasibility of using ultrasound imaging as a robust muscle-computer interface. Potential clinical applications include control of multiarticulated prosthetic hands, stroke rehabilitation, and fundamental investigations of motor control and biomechanics.


Subject(s)
Forearm/physiology , Hand/physiology , Image Processing, Computer-Assisted/methods , Muscle, Skeletal/physiology , Ultrasonography/methods , Algorithms , Female , Hand Strength/physiology , Humans , Male , Movement/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...