Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
IEEE J Biomed Health Inform ; 27(8): 3740-3747, 2023 08.
Article in English | MEDLINE | ID: mdl-37018586

ABSTRACT

Early detection is vital for future neuroprotective treatments of Parkinson's disease (PD). Resting state electroencephalographic (EEG) recording has shown potential as a cost-effective means to aid in detection of neurological disorders such as PD. In this study, we investigated how the number and placement of electrodes affects classifying PD patients and healthy controls using machine learning based on EEG sample entropy. We used a custom budget-based search algorithm for selecting optimized sets of channels for classification, and iterated over variable channel budgets to investigate changes in classification performance. Our data consisted of 60-channel EEG collected at three different recording sites, each of which included observations collected both eyes open (total N = 178) and eyes closed (total N = 131). Our results with the data recorded eyes open demonstrated reasonable classification performance (ACC = .76; AUC = .76) with only 5 channels placed far away from each other, the selected regions including right-frontal, left-temporal and midline-occipital sites. Comparison to randomly selected subsets of channels indicated improved classifier performance only with relatively small channel-budgets. The results with the data recorded eyes closed demonstrated consistently worse classification performance (when compared to eyes open data), and classifier performance improved more steadily as a function of number of channels. In summary, our results suggest that a small subset of electrodes of an EEG recording can suffice for detecting PD with a classification performance on par with a full set of electrodes. Furthermore our results demonstrate that separately collected EEG data sets can be used for pooled machine learning based PD detection with reasonable classification performance.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/diagnosis , Electroencephalography/methods , Algorithms , Electrodes , Support Vector Machine
2.
Int J Med Inform ; 133: 104014, 2020 01.
Article in English | MEDLINE | ID: mdl-31783311

ABSTRACT

INTRODUCTION: Predictive survival modeling offers systematic tools for clinical decision-making and individualized tailoring of treatment strategies to improve patient outcomes while reducing overall healthcare costs. In 2015, a number of machine learning and statistical models were benchmarked in the DREAM 9.5 Prostate Cancer Challenge, based on open clinical trial data for metastatic castration resistant prostate cancer (mCRPC). However, applying these models into clinical practice poses a practical challenge due to the inclusion of a large number of model variables, some of which are not routinely monitored or are expensive to measure. OBJECTIVES: To develop cost-specified variable selection algorithms for constructing cost-effective prognostic models of overall survival that still preserve sufficient model performance for clinical decision making. METHODS: Penalized Cox regression models were used for the survival prediction. For the variable selection, we implemented two algorithms: (i) LASSO regularization approach; and (ii) a greedy cost-specified variable selection algorithm. The models were compared in three cohorts of mCRPC patients from randomized clinical trials (RCT), as well as in a real-world cohort (RWC) of advanced prostate cancer patients treated at the Turku University Hospital. Hospital laboratory expenses were utilized as a reference for computing the costs of introducing new variables into the models. RESULTS: Compared to measuring the full set of clinical variables, economic costs could be reduced by half without a significant loss of model performance. The greedy algorithm outperformed the LASSO-based variable selection with the lowest tested budgets. The overall top performance was higher with the LASSO algorithm. CONCLUSION: The cost-specified variable selection offers significant budget optimization capability for the real-world survival prediction without compromising the predictive power of the model.


Subject(s)
Prostatic Neoplasms/economics , Aged , Aged, 80 and over , Algorithms , Clinical Decision-Making , Cost-Benefit Analysis , Hospitals , Humans , Male , Prognosis , Prostatic Neoplasms/diagnosis , Registries
3.
Bioinformatics ; 34(22): 3957-3959, 2018 11 15.
Article in English | MEDLINE | ID: mdl-29912284

ABSTRACT

Motivation: Prognostic models are widely used in clinical decision-making, such as risk stratification and tailoring treatment strategies, with the aim to improve patient outcomes while reducing overall healthcare costs. While prognostic models have been adopted into clinical use, benchmarking their performance has been difficult due to lack of open clinical datasets. The recent DREAM 9.5 Prostate Cancer Challenge carried out an extensive benchmarking of prognostic models for metastatic Castration-Resistant Prostate Cancer (mCRPC), based on multiple cohorts of open clinical trial data. Results: We make available an open-source implementation of the top-performing model, ePCR, along with an extended toolbox for its further re-use and development, and demonstrate how to best apply the implemented model to real-world data cohorts of advanced prostate cancer patients. Availability and implementation: The open-source R-package ePCR and its reference documentation are available at the Central R Archive Network (CRAN): https://CRAN.R-project.org/package=ePCR. R-vignette provides step-by-step examples for the ePCR usage. Supplementary information: Supplementary data are available at Bioinformatics online.


Subject(s)
Polymerase Chain Reaction , Prostatic Neoplasms/diagnosis , Software , Humans , Male , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL