Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
J Nutr ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38797481

ABSTRACT

BACKGROUND: Industrial processing can alter the structural complexity of dietary proteins and, potentially, their digestion and absorption upon ingestion. High moisture extrusion (HME), a common processing method used to produce meat alternative products, affects in vitro digestion, but human data are lacking. We hypothesised that HME of a mycoprotein/pea protein blend would impair in vitro digestion and in vivo postprandial plasma amino acid availability. METHODS: In Study A nine healthy volunteers completed two experimental trials in a randomised, double-blind, cross-over design. Participants consumed a beverage containing 25 g protein from a 'dry' blend (CON) of mycoprotein/pea protein (39/61%) or a HME content matched blend (EXT). Arterialised-venous blood samples were collected in the postabsorptive state and regularly over a 5 h postprandial period to assess plasma amino acid concentrations. In Study B, in vitro digestibility of the two beverages were assessed using BCA assay and optical-fluorescence microscopy at baseline, during and following gastric and intestinal digestion using the INFOGEST model of digestion. RESULTS: Protein ingestion increased plasma total, essential (EAA), and branched-chain amino acid (BCAA) concentrations (time effect; P<0.0001), but more rapidly and to a greater magnitude in the CON compared with the EXT condition (condition x time interaction; P<0.0001). This resulted in greater plasma availability of EAA and BCAA concentrations during the early postprandial period (0-150 min). These data were corroborated by the in vitro approach which showed greater protein availability in the CON (2150 ± 129 mg·mL-1) compared with EXT (590 ± 41 mg·mL-1) during the gastric phase. Fluorescence microscopy revealed clear structural differences between the two conditions. CONCLUSIONS: These data demonstrate that HME delays in vivo plasma amino acid availability following ingestion of a mycoprotein/pea protein blend. This is likely due to impaired gastric phase digestion as a result of HME induced aggregate formation in the pea protein. CLINICAL TRIALS: NCT05584358.

2.
Diabetologia ; 67(6): 1107-1113, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38483543

ABSTRACT

AIMS/HYPOTHESIS: The aim of the present study was to conduct a randomised, placebo-controlled, double-blind, crossover trial to determine whether pre-meal ketone monoester ingestion reduces postprandial glucose concentrations in individuals with type 2 diabetes. METHODS: In this double-blind, placebo-controlled, crossover design study, ten participants with type 2 diabetes (age 59±1.7 years, 50% female, BMI 32±1 kg/m2, HbA1c 54±2 mmol/mol [7.1±0.2%]) were randomised using computer-generated random numbers. The study took place at the Nutritional Physiology Research Unit, University of Exeter, Exeter, UK. Using a dual-glucose tracer approach, we assessed glucose kinetics after the ingestion of a 0.5 g/kg body mass ketone monoester (KME) or a taste-matched non-caloric placebo before a mixed-meal tolerance test. The primary outcome measure was endogenous glucose production. Secondary outcome measures were total glucose appearance rate and exogenous glucose appearance rate, glucose disappearance rate, blood glucose, serum insulin, ß-OHB and NEFA levels, and energy expenditure. RESULTS: Data for all ten participants were analysed. KME ingestion increased mean ± SEM plasma beta-hydroxybutyrate from 0.3±0.03 mmol/l to a peak of 4.3±1.2 mmol/l while reducing 2 h postprandial glucose concentrations by ~18% and 4 h postprandial glucose concentrations by ~12%, predominately as a result of a 28% decrease in the 2 h rate of glucose appearance following meal ingestion (all p<0.05). The reduction in blood glucose concentrations was associated with suppressed plasma NEFA concentrations after KME ingestion, with no difference in plasma insulin concentrations between the control and KME conditions. Postprandial endogenous glucose production was unaffected by KME ingestion (mean ± SEM 0.76±0.15 and 0.88±0.10 mg kg-1 min-1 for the control and KME, respectively). No adverse effects of KME ingestion were observed. CONCLUSIONS/INTERPRETATION: KME ingestion appears to delay glucose absorption in adults with type 2 diabetes, thereby reducing postprandial glucose concentrations. Future work to explore the therapeutic potential of KME supplementation in type 2 diabetes is warranted. TRIAL REGISTRATION: ClinicalTrials.gov NCT05518448. FUNDING: This project was supported by a Canadian Institutes of Health Research (CIHR) Project Grant (PJT-169116) and a Natural Sciences and Engineering Research Council (NSERC) Discovery Grant (RGPIN-2019-05204) awarded to JPL and an Exeter-UBCO Sports Health Science Fund Project Grant awarded to FBS and JPL.


Subject(s)
Blood Glucose , Cross-Over Studies , Diabetes Mellitus, Type 2 , Ketones , Postprandial Period , Humans , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Female , Middle Aged , Blood Glucose/metabolism , Blood Glucose/drug effects , Male , Double-Blind Method , Ketones/blood , 3-Hydroxybutyric Acid/blood , Insulin/blood , Beverages
3.
Med Sci Sports Exerc ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38537270

ABSTRACT

PURPOSE: Whey protein ingestion is typically considered an optimal dietary strategy to maximize myofibrillar protein synthesis (MyoPS) following resistance exercise. While single source plant protein ingestion is typically less effective, at least partly, due to less favorable amino acid profiles, this could theoretically be overcome by blending plant-based proteins with complementary amino acid profiles. We compared the post-exercise MyoPS response following the ingestion of a novel plant-derived protein blend with an isonitrogenous bolus of whey protein. METHODS: Ten healthy, resistance trained, young adults (male/female: 8/2; age: 26 ± 6 y; BMI: 24 ± 3 kg·m-2) received a primed continuous infusion of L-[ring-2H5]-phenylalanine and completed a bout of bilateral leg resistance exercise before ingesting 32 g protein from whey (WHEY) or a plant protein blend (BLEND; 39.5% pea, 39.5% brown rice, 21.0% canola) in a randomized, double-blind crossover fashion. Blood and muscle samples were collected at rest, and 2 and 4 h after exercise and protein ingestion, to assess plasma amino acid concentrations, and postabsorptive and post-exercise MyoPS rates. RESULTS: Plasma essential amino acid availability over the 4 h postprandial post-exercise period was ~44% higher in WHEY compared with BLEND (P = 0.04). From equivalent postabsorptive values (WHEY, 0.042 ± 0.020%·h-1; BLEND, 0.043 ± 0.015%·h-1) MyoPS rates increased following exercise and protein ingestion (time effect; P < 0.001) over a 0-2 h (WHEY, 0.085 ± 0.037%·h-1; BLEND, 0.080 ± 0.037%·h-1) and 2-4 h (WHEY, 0.085 ± 0.036%·h-1; BLEND, 0.086 ± 0.034%·h-1) period, with no differences between conditions during either period or throughout the entire (0-4 h) postprandial period (time × condition interactions; all P > 0.05). CONCLUSIONS: Ingestion of a novel plant-based protein blend stimulates post-exercise MyoPS to an equivalent extent as a whey protein, demonstrating the utility of plant protein blends to optimize post-exercise skeletal muscle reconditioning.

4.
Br J Nutr ; 131(9): 1540-1553, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38220222

ABSTRACT

Whole-body tissue protein turnover is regulated, in part, by the postprandial rise in plasma amino acid concentrations, although minimal data exist on the amino acid response following non-animal-derived protein consumption. We hypothesised that the ingestion of novel plant- and algae-derived dietary protein sources would elicit divergent plasma amino acid responses when compared with vegan- and animal-derived control proteins. Twelve healthy young (male (m)/female (f): 6/6; age: 22 ± 1 years) and 10 healthy older (m/f: 5/5; age: 69 ± 2 years) adults participated in a randomised, double-blind, cross-over trial. During each visit, volunteers consumed 30 g of protein from milk, mycoprotein, pea, lupin, spirulina or chlorella. Repeated arterialised venous blood samples were collected at baseline and over a 5-h postprandial period to assess circulating amino acid, glucose and insulin concentrations. Protein ingestion increased plasma total and essential amino acid concentrations (P < 0·001), to differing degrees between sources (P < 0·001), and the increase was further modulated by age (P < 0·001). Postprandial maximal plasma total and essential amino acid concentrations were highest for pea (2828 ± 106 and 1480 ± 51 µmol·l-1) and spirulina (2809 ± 99 and 1455 ± 49 µmol·l-1) and lowest for chlorella (2053 ± 83 and 983 ± 35 µmol·l-1) (P < 0·001), but were not affected by age (P > 0·05). Postprandial total and essential amino acid availabilities were highest for pea, spirulina and mycoprotein and lowest for chlorella (all P < 0·05), but no effect of age was observed (P > 0·05). The ingestion of a variety of novel non-animal-derived dietary protein sources elicits divergent plasma amino acid responses, which are further modulated by age.


Subject(s)
Amino Acids , Cross-Over Studies , Dietary Proteins , Insulin , Postprandial Period , Spirulina , Humans , Male , Female , Aged , Young Adult , Amino Acids/blood , Dietary Proteins/administration & dosage , Double-Blind Method , Insulin/blood , Amino Acids, Essential/blood , Amino Acids, Essential/administration & dosage , Chlorella , Blood Glucose/metabolism , Blood Glucose/analysis , Adult , Animals , Plant Proteins, Dietary/administration & dosage , Pisum sativum/chemistry , Pea Proteins/blood , Milk/chemistry , Milk Proteins/administration & dosage , Age Factors
5.
Am J Physiol Endocrinol Metab ; 326(3): E277-E289, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38231001

ABSTRACT

Although the mechanisms underpinning short-term muscle disuse atrophy and associated insulin resistance remain to be elucidated, perturbed lipid metabolism might be involved. Our aim was to determine the impact of acipimox administration [i.e., pharmacologically lowering circulating nonesterified fatty acid (NEFA) availability] on muscle amino acid metabolism and insulin sensitivity during short-term disuse. Eighteen healthy individuals (age: 22 ± 1 years; body mass index: 24.0 ± 0.6 kg·m-2) underwent 2 days forearm immobilization with placebo (PLA; n = 9) or acipimox (ACI; 250 mg Olbetam; n = 9) ingestion four times daily. Before and after immobilization, whole body glucose disposal rate (GDR), forearm glucose uptake (FGU; i.e., muscle insulin sensitivity), and amino acid kinetics were measured under fasting and hyperinsulinemic-hyperaminoacidemic-euglycemic clamp conditions using forearm balance and l-[ring-2H5]-phenylalanine infusions. Immobilization did not affect GDR but decreased insulin-stimulated FGU in both groups, more so in ACI (from 53 ± 8 to 12 ± 5 µmol·min-1) than PLA (from 52 ± 8 to 38 ± 13 µmol·min-1; P < 0.05). In ACI only, and in contrast to our hypothesis, fasting arterialized NEFA concentrations were elevated to 1.3 ± 0.1 mmol·L-1 postimmobilization (P < 0.05), and fasting forearm NEFA balance increased approximately fourfold (P = 0.10). Forearm phenylalanine net balance decreased following immobilization (P < 0.10), driven by an increased rate of appearance [from 32 ± 5 (fasting) and 21 ± 4 (clamp) preimmobilization to 53 ± 8 and 31 ± 4 postimmobilization; P < 0.05] while the rate of disappearance was unaffected by disuse or acipimox. Disuse-induced insulin resistance is accompanied by early signs of negative net muscle amino acid balance, which is driven by accelerated muscle amino acid efflux. Acutely elevated NEFA availability worsened muscle insulin resistance without affecting amino acid kinetics, suggesting increased muscle NEFA uptake may contribute to inactivity-induced insulin resistance but does not cause anabolic resistance.NEW & NOTEWORTHY We demonstrate that 2 days of forearm cast immobilization in healthy young volunteers leads to the rapid development of insulin resistance, which is accompanied by accelerated muscle amino acid efflux in the absence of impaired muscle amino acid uptake. Acutely elevated fasting nonesterified fatty acid (NEFA) availability as a result of acipimox supplementation worsened muscle insulin resistance without affecting amino acid kinetics, suggesting increased muscle NEFA uptake may contribute to inactivity-induced insulin resistance but does not cause anabolic resistance.


Subject(s)
Insulin Resistance , Pyrazines , Humans , Young Adult , Amino Acids/metabolism , Fatty Acids, Nonesterified/metabolism , Forearm , Glucose/metabolism , Hypolipidemic Agents/metabolism , Hypolipidemic Agents/pharmacology , Hypolipidemic Agents/therapeutic use , Insulin/metabolism , Muscles/metabolism , Phenylalanine/metabolism , Polyesters/metabolism , Volunteers
6.
Exp Physiol ; 109(2): 227-239, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37966359

ABSTRACT

Studies of extreme endurance have suggested that there is an alimentary limit to energy intake (EI) of ∼2.5 × resting metabolic rate (RMR). To gain further insight, this study aimed to simultaneously measure EI, total energy expenditure (TEE) body mass and muscle mass in a large cohort of males and females of varying ages during a transatlantic rowing race. Forty-nine competitors (m = 32, f = 17; age 24-67 years; time at sea 46 ± 7 days) in the 2020 and 2021 Talisker Whisky Atlantic Challenge rowed 12-18 hday-1 for ∼3000 miles. TEE was assessed in the final week of the row using 2 H2 18 O doubly labelled water, and EI was analysed from daily ration packs over this period. Thickness of relatively active (vastus lateralis, intermedius, biceps brachaii and rectus abdominus) and inactive (gastrocnemius, soleus and triceps) muscles was measured pre (<7 days) and post (<24 h) row using ultrasound. Body mass was measured and used to calculate RMR from standard equations. There were no sex differences in males and females in EI (2.5 ± 0.5 and 2.3 ± 0.4 × RMR, respectively, P = 0.3050), TEE (2.5 ± 1.0 and 2.3 ± 0.4 × RMR, respectively, P = 0.5170), or body mass loss (10.2 ± 3.1% and 10.0 ± 3.0%, respectively, P = 0.8520), and no effect of age on EI (P = 0.5450) or TEE (P = 0.9344). Muscle loss occurred exclusively in the calf (15.7% ± 11.4% P < 0.0001), whilst other muscles remained unchanged. After 46 days of prolonged ultra-endurance ocean rowing incurring 10% body mass loss, maximal sustainable EI of ∼2.5 × RMR was unable to meet total TEE suggesting that there is indeed a physiological capacity to EI.


Subject(s)
Body Composition , Energy Metabolism , Humans , Male , Female , Young Adult , Adult , Middle Aged , Aged , Energy Metabolism/physiology , Body Composition/physiology , Basal Metabolism/physiology , Energy Intake/physiology , Muscle, Skeletal , Oceans and Seas
7.
Clin Sci (Lond) ; 138(1): 43-60, 2024 01 10.
Article in English | MEDLINE | ID: mdl-38112515

ABSTRACT

Nasogastric feeding of protein-rich liquids is a nutritional support therapy that attenuates muscle mass loss. However, whether administration via a nasogastric tube per se augments whole-body or muscle protein anabolism compared with oral administration is unknown. Healthy participants were administered a protein-rich drink (225 ml containing 21 g protein) orally (ORAL; n=13; age 21 ± 1 year; BMI 22.2 ± 0.6 kg·m-2) or via a nasogastric tube (NG; n=13; age 21 ± 1 yr; BMI 23.9 ± 0.9 kg·m-2) in a parallel group design, balanced for sex. L-[ring-2H5]-phenylalanine and L-[3,3-2H2]-tyrosine were infused to measure postabsorptive and postprandial whole-body protein turnover. Skeletal muscle biopsies were collected at -120, 0, 120 and 300 min relative to drink administration to quantify temporal myofibrillar fractional synthetic rates (myoFSR). Drink administration increased serum insulin and plasma amino acid concentrations, and to a greater extent and duration in NG versus ORAL (all interactions P<0.05). Drink administration increased whole-body protein synthesis (P<0.01), suppressed protein breakdown (P<0.001), and created positive net protein balance (P<0.001), but to a similar degree in ORAL and NG (interactions P>0.05). Drink administration increased myoFSR from the postabsorptive state (P<0.01), regardless of route of administration in ORAL and in NG (interaction P>0.05). Nasogastric bolus administration of a protein-rich drink induces insulinaemia and aminoacidaemia to a greater extent than oral administration, but the postprandial increase in whole-body protein turnover and muscle protein synthesis was equivalent between administration routes. Nasogastric administration is a potent intervention to increase postprandial amino acid availability. Future work should assess its utility in overcoming impaired sensitivity to protein feeding, such as that seen in ageing, disuse, and critical care.


Subject(s)
Amino Acids , Muscle Proteins , Humans , Young Adult , Adult , Muscle Proteins/metabolism , Amino Acids/metabolism , Muscle, Skeletal/metabolism , Phenylalanine/metabolism , Administration, Oral
8.
bioRxiv ; 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37873346

ABSTRACT

The mechanisms underpinning short-term muscle disuse atrophy remain to be elucidated, but perturbations in lipid metabolism may be involved. Specifically, positive muscle non-esterified fatty acid (NEFA) balance has been implicated in the development of disuse-induced insulin and anabolic resistance. Our aim was to determine the impact of acipimox administration (i.e. pharmacologically lowering circulating NEFA availability) on muscle amino acid metabolism and insulin sensitivity during short-term disuse. Eighteen healthy individuals (age 22±1 years, BMI 24.0±0.6 kg·m-2) underwent 2 days of forearm cast immobilization with placebo (PLA; n=9, 5M/4F) or acipimox (ACI; 250 mg Olbetam; n=9, 4M/5F) ingestion four times daily. Before and after immobilization, whole-body glucose disposal rate (GDR), forearm glucose uptake (FGU, i.e. muscle insulin sensitivity), and amino acid kinetics were measured under fasting and hyperinsulinaemic-hyperaminoacidaemic-euglycaemic clamp conditions using arteriovenous forearm balance and intravenous L-[ring-2H5]phenylalanine infusions. Immobilization did not affect GDR but decreased insulin-stimulated FGU in both groups, but to a greater degree in ACI (from 53±8 to 12±5 µmol·min-1) than in PLA (from 52±8 to 38±13 µmol·min-1; P<0.05). In ACI only, fasting arterialised NEFA concentrations were elevated to 1.3±0.1 mmol·L-1 post-immobilization (P<0.05), and fasting forearm NEFA balance increased ~4-fold (P=0.10). Forearm phenylalanine net balance tended to decrease following immobilization (P<0.10), driven by increases in phenylalanine rates of appearance (from 32±5 (fasting) and 21±4 (clamp) pre-immobilization to 53±8 and 31±4 post-immobilization; P<0.05) while rates of disappearance were unaffected and no effects of acipimox observed. Altogether, we show disuse-induced insulin resistance is accompanied by early signs of negative net muscle amino acid balance, which is driven by accelerated muscle amino acid efflux. Acutely elevated NEFA availability worsened muscle insulin resistance without affecting muscle amino acid kinetics, suggesting that disuse-associated increased muscle NEFA uptake may contribute to inactivity-induced insulin resistance but does not represent an early mechanism causing anabolic resistance.

9.
J Nutr ; 153(12): 3406-3417, 2023 12.
Article in English | MEDLINE | ID: mdl-37716611

ABSTRACT

BACKGROUND: Spirulina [SPIR] (cyanobacterium) and chlorella [CHLO] (microalgae) are foods rich in protein and essential amino acids; however, their capacity to stimulate myofibrillar protein synthesis (MyoPS) in humans remains unknown. OBJECTIVES: We assessed the impact of ingesting SPIR and CHLO compared with an established high-quality nonanimal-derived dietary protein source (fungal-derived mycoprotein [MYCO]) on plasma amino acid concentrations, as well as resting and postexercise MyoPS rates in young adults. METHODS: Thirty-six healthy young adults (age: 22 ± 3 y; BMI: 23 ± 3 kg·m-2; male [m]/female [f], 18/18) participated in a randomized, double-blind, parallel-group trial. Participants received a primed, continuous infusion of L-[ring-2H5]-phenylalanine and completed a bout of unilateral-resistance leg exercise before ingesting a drink containing 25 g protein from MYCO (n = 12; m/f, 6/6), SPIR (n = 12; m/f, 6/6), or CHLO (n = 12; m/f, 6/6). Blood and bilateral muscle samples were collected at baseline and during a 4-h postprandial and postexercise period to assess the plasma amino acid concentrations and MyoPS rates in rested and exercised tissue. RESULTS: Protein ingestion increased the plasma total and essential amino acid concentrations (time effects; all P < 0.001), but most rapidly and with higher peak responses following the ingestion of SPIR compared with MYCO and CHLO (P < 0.05), and MYCO compared with CHLO (P < 0.05). Protein ingestion increased MyoPS rates (time effect; P < 0.001) in both rested (MYCO, from 0.041 ± 0.032 to 0.060 ± 0.015%·h-1; SPIR, from 0.042 ± 0.030 to 0.066 ± 0.022%·h-1; and CHLO, from 0.037 ± 0.007 to 0.055 ± 0.019%·h-1, respectively) and exercised tissue (MYCO, from 0.046 ± 0.014 to 0.092 ± 0.024%·h-1; SPIR, from 0.038 ± 0.011 to 0.086 ± 0.028%·h-1; and CHLO, from 0.048 ± 0.019 to 0.090 ± 0.024%·h-1, respectively), with no differences between groups (interaction effect; P > 0.05), but with higher rates in exercised compared with rested muscle (time × exercise effect; P < 0.001). CONCLUSIONS: The ingestion of a single bolus of algae-derived SPIR and CHLO increases resting and postexercise MyoPS rates to a comparable extent as MYCO, despite divergent postprandial plasma amino acid responses.


Subject(s)
Chlorella , Resistance Training , Humans , Male , Young Adult , Female , Adult , Chlorella/metabolism , Muscle Proteins/metabolism , Amino Acids, Essential/metabolism , Phenylalanine/metabolism , Dietary Proteins/metabolism , Eating , Muscle, Skeletal/metabolism
10.
Sci Data ; 10(1): 635, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37726365

ABSTRACT

Metabolic stable isotope labeling with heavy water followed by liquid chromatography coupled with mass spectrometry (LC-MS) is a powerful tool for in vivo protein turnover studies. Several algorithms and tools have been developed to determine the turnover rates of peptides and proteins from time-course stable isotope labeling experiments. The availability of benchmark mass spectrometry data is crucial to compare and validate the effectiveness of newly developed techniques and algorithms. In this work, we report a heavy water-labeled LC-MS dataset from the murine liver for protein turnover rate analysis. The dataset contains eighteen mass spectral data with their corresponding database search results from nine different labeling durations and quantification outputs from d2ome+ software. The dataset also contains eight mass spectral data from two-dimensional fractionation experiments on unlabeled samples.


Subject(s)
Liver , Proteome , Animals , Mice , Chromatography, Liquid , Deuterium Oxide , Tandem Mass Spectrometry
11.
Am J Physiol Endocrinol Metab ; 325(3): E267-E279, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37529834

ABSTRACT

Pea protein is an attractive nonanimal-derived protein source to support dietary protein requirements. However, although high in leucine, a low methionine content has been suggested to limit its anabolic potential. Mycoprotein has a complete amino acid profile which, at least in part, may explain its ability to robustly stimulate myofibrillar protein synthesis (MyoPS) rates. We hypothesized that an inferior postexercise MyoPS response would be seen following ingestion of pea protein compared with mycoprotein, which would be (partially) rescued by blending the two sources. Thirty-three healthy, young [age: 21 ± 1 yr, body mass index (BMI): 24 ± 1 kg·m-2] and resistance-trained participants received primed, continuous infusions of l-[ring-2H5]phenylalanine and completed a bout of whole body resistance exercise before ingesting 25 g of protein from mycoprotein (MYC, n = 11), pea protein (PEA, n = 11), or a blend (39% MYC, 61% PEA) of the two (BLEND, n = 11). Blood and muscle samples were taken pre-, 2 h, and 4 h postexercise/protein ingestion to assess postabsorptive and postprandial postexercise myofibrillar protein fractional synthetic rates (FSRs). Protein ingestion increased plasma essential amino acid and leucine concentrations (time effect; P < 0.0001), but more rapidly in BLEND and PEA compared with MYC (time × condition interaction; P < 0.0001). From similar postabsorptive values (MYC, 0.026 ± 0.008%·h-1; PEA, 0.028 ± 0.007%·h-1; BLEND, 0.026 ± 0.006%·h-1), resistance exercise and protein ingestion increased myofibrillar FSRs (time effect; P < 0.0001) over a 4-h postprandial period (MYC, 0.076 ± 0.004%·h-1; PEA, 0.087 ± 0.01%·h-1; BLEND, 0.085 ± 0.01%·h-1), with no differences between groups (all; P > 0.05). These data show that all three nonanimal-derived protein sources have utility in supporting postexercise muscle reconditioning.NEW & NOTEWORTHY This study provides evidence that pea protein (PEA), mycoprotein (MYC), and their blend (BLEND) can support postexercise myofibrillar protein synthesis rates following a bout of whole body resistance exercise. Furthermore, these data suggest that a methionine deficiency in pea may not limit its capacity to stimulate an acute increase in muscle protein synthesis (MPS).


Subject(s)
Pea Proteins , Resistance Training , Humans , Young Adult , Adult , Leucine/metabolism , Pea Proteins/metabolism , Amino Acids/metabolism , Muscle, Skeletal/metabolism , Eating , Methionine/metabolism , Dietary Proteins/metabolism , Postprandial Period
12.
J Cachexia Sarcopenia Muscle ; 14(5): 2064-2075, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37431714

ABSTRACT

BACKGROUND: The decline in postabsorptive and postprandial muscle protein fractional synthesis rates (FSR) does not quantitatively account for muscle atrophy during uncomplicated, short-term disuse, when atrophy rates are the highest. We sought to determine whether 2 days of unilateral knee immobilization affects mixed muscle protein fractional breakdown rates (FBR) during postabsorptive and simulated postprandial conditions. METHODS: Twenty-three healthy, male participants (age: 22 ± 1 year; height: 179 ± 1 cm; body mass: 73.4 ± 1.5 kg; body mass index 22.8 ± 0.5 kg·m-2 ) took part in this randomized, controlled study. After 48 h of unilateral knee immobilization, primed continuous intravenous l-[15 N]-phenylalanine and l-[ring-2 H5 ]-phenylalanine infusions were used for parallel determinations of FBR and FSR, respectively, in a postabsorptive (saline infusion; FAST) or simulated postprandial state (67.5 mg·kg body mass-1 ·h-1 amino acid infusion; FED). Bilateral m. vastus lateralis biopsies from the control (CON) and immobilized (IMM) legs, and arterialized-venous blood samples, were collected throughout. RESULTS: Amino acid infusion rapidly increased plasma phenylalanine (59 ± 9%), leucine (76 ± 5%), isoleucine (109 ± 7%) and valine (42 ± 4%) concentrations in FED only (all P < 0.001), which was sustained for the remainder of infusion. Serum insulin concentrations peaked at 21.8 ± 2.2 mU·L-1 at 15 min in FED only (P < 0.001) and were 60% greater in FED than FAST (P < 0.01). Immobilization did not influence FBR in either FAST (CON: 0.150 ± 0.018; IMM: 0.143 ± 0.017%·h-1 ) or FED (CON: 0.134 ± 0.012; IMM: 0.160 ± 0.018%·h-1 ; all effects P > 0.05). However, immobilization decreased FSR (P < 0.05) in both FAST (0.071 ± 0.004 vs. 0.086 ± 0.007%·h-1 ; IMM vs CON, respectively) and FED (0.066 ± 0.016 vs. 0.119 ± 0.016%·h-1 ; IMM vs CON, respectively). Consequently, immobilization decreased net muscle protein balance (P < 0.05) and to a greater extent in FED (CON: -0.012 ± 0.025; IMM: -0.095 ± 0.023%·h-1 ; P < 0.05) than FAST (CON: -0.064 ± 0.020; IMM: -0.072 ± 0.017%·h-1 ). CONCLUSIONS: We conclude that merely 2 days of leg immobilization does not modulate postabsorptive and simulated postprandial muscle protein breakdown rates. Instead, under these conditions the muscle negative muscle protein balance associated with brief periods of experimental disuse is driven near exclusively by reduced basal muscle protein synthesis rates and anabolic resistance to amino acid administration.

13.
Commun Chem ; 6(1): 72, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37069333

ABSTRACT

Heavy water metabolic labeling followed by liquid chromatography coupled with mass spectrometry is a powerful high throughput technique for measuring the turnover rates of individual proteins in vivo. The turnover rate is obtained from the exponential decay modeling of the depletion of the monoisotopic relative isotope abundance. We provide theoretical formulas for the time course dynamics of six mass isotopomers and use the formulas to introduce a method that utilizes partial isotope profiles, only two mass isotopomers, to compute protein turnover rate. The use of partial isotope profiles alleviates the interferences from co-eluting contaminants in complex proteome mixtures and improves the accuracy of the estimation of label enrichment. In five different datasets, the technique consistently doubles the number of peptides with high goodness-of-fit characteristics of the turnover rate model. We also introduce a software tool, d2ome+, which automates the protein turnover estimation from partial isotope profiles.

14.
J Surg Res ; 288: 108-117, 2023 08.
Article in English | MEDLINE | ID: mdl-36963297

ABSTRACT

INTRODUCTION: Mitochondrial dysfunction is implicated in the metabolic myopathy accompanying peripheral artery disease (PAD) and critical limb ischemia (CLI). Type-2 diabetes mellitus (T2DM) is a major risk factor for PAD development and progression to CLI and may also independently be related to mitochondrial dysfunction. We set out to determine the effect of T2DM in the relationship between CLI and muscle mitochondrial respiratory capacity and coupling control. METHODS: We studied CLI patients undergoing revascularization procedures or amputation, and non-CLI patients with or without T2DM of similar age. Mitochondrial respiratory capacity and function were determined in lower limb permeabilized myofibers by high-resolution respirometry. RESULTS: Fourteen CLI patients (65 ± 10y) were stratified into CLI patients with (n = 8) or without (n = 6) T2DM and were compared to non-CLI patients with (n = 18; 69 ± 5y) or without (n = 19; 71 ± 6y) T2DM. Presence of CLI but not T2DM had a marked impact on all mitochondrial respiratory states in skeletal muscle, adjusted for the effects of sex. Leak respiration (State 2, P < 0.025 and State 4o, P < 0.01), phosphorylating respiration (P < 0.001), and maximal respiration in the uncoupled state (P < 0.001), were all suppressed in CLI patients, independent of T2DM. T2DM had no significant effect on mitochondrial respiratory capacity and function in adults without CLI. CONCLUSIONS: Skeletal muscle mitochondrial respiratory capacity was blunted by ∼35% in patients with CLI. T2DM was not associated with muscle oxidative capacity and did not moderate the relationship between muscle mitochondrial respiratory capacity and CLI.


Subject(s)
Diabetes Mellitus , Peripheral Arterial Disease , Adult , Humans , Chronic Limb-Threatening Ischemia , Muscle, Skeletal , Peripheral Arterial Disease/complications , Risk Factors , Energy Metabolism , Ischemia/complications , Ischemia/metabolism , Treatment Outcome , Limb Salvage
15.
J Nutr ; 153(6): 1680-1695, 2023 06.
Article in English | MEDLINE | ID: mdl-36822394

ABSTRACT

BACKGROUND: It remains unclear whether non-animal-derived dietary protein sources (and therefore vegan diets) can support resistance training-induced skeletal muscle remodeling to the same extent as animal-derived protein sources. METHODS: In Phase 1, 16 healthy young adults (m = 8, f = 8; age: 23 ± 1 y; BMI: 23 ± 1 kg/m2) completed a 3-d dietary intervention (high protein, 1.8 g·kg bm-1·d-1) where protein was derived from omnivorous (OMNI1; n = 8) or exclusively non-animal (VEG1; n = 8) sources, alongside daily unilateral leg resistance exercise. Resting and exercised daily myofibrillar protein synthesis (MyoPS) rates were assessed using deuterium oxide. In Phase 2, 22 healthy young adults (m = 11, f = 11; age: 24 ± 1 y; BMI: 23 ± 0 kg/m2) completed a 10 wk, high-volume (5 d/wk), progressive resistance exercise program while consuming an omnivorous (OMNI2; n = 12) or non-animal-derived (VEG2; n = 10) high-protein diet (∼2 g·kg bm-1·d-1). Muscle fiber cross-sectional area (CSA), whole-body lean mass (via DXA), thigh muscle volume (via MRI), muscle strength, and muscle function were determined pre, after 2 and 5 wk, and postintervention. OBJECTIVES: To investigate whether a high-protein, mycoprotein-rich, non-animal-derived diet can support resistance training-induced skeletal muscle remodeling to the same extent as an isonitrogenous omnivorous diet. RESULTS: Daily MyoPS rates were ∼12% higher in the exercised than in the rested leg (2.46 ± 0.27%·d-1 compared with 2.20 ± 0.33%·d-1 and 2.62 ± 0.56%·d-1 compared with 2.36 ± 0.53%·d-1 in OMNI1 and VEG1, respectively; P < 0.001) and not different between groups (P > 0.05). Resistance training increased lean mass in both groups by a similar magnitude (OMNI2 2.6 ± 1.1 kg, VEG2 3.1 ± 2.5 kg; P > 0.05). Likewise, training comparably increased thigh muscle volume (OMNI2 8.3 ± 3.6%, VEG2 8.3 ± 4.1%; P > 0.05), and muscle fiber CSA (OMNI2 33 ± 24%, VEG2 32 ± 48%; P > 0.05). Both groups increased strength (1 repetition maximum) of multiple muscle groups, to comparable degrees. CONCLUSIONS: Omnivorous and vegan diets can support comparable rested and exercised daily MyoPS rates in healthy young adults consuming a high-protein diet. This translates to similar skeletal muscle adaptive responses during prolonged high-volume resistance training, irrespective of dietary protein provenance. This trial was registered at clinicaltrials.gov as NCT03572127.


Subject(s)
Diet, High-Protein , Resistance Training , Humans , Diet, Vegan , Dietary Proteins/metabolism , Hypertrophy/metabolism , Muscle Strength , Muscle, Skeletal/metabolism , Vegans
16.
J Burn Care Res ; 44(3): 546-550, 2023 May 02.
Article in English | MEDLINE | ID: mdl-30649359

ABSTRACT

Isokinetic dynamometry is used during exercise testing and rehabilitation to obtain a quantitative strength measurement on which progressive strength training programs can be based. This study assesses the test-retest reliability of isokinetic leg function in the knee flexors and extensors at 150°/s in children and young adults with severe burns to be used for rehabilitation exercise program prescription. In 39 severely burned patients (49 ± 14% total body surface area burn [TBSA], mean ± SD; 34 ± 21% TBSA 3rd degree; 14 ± 5 years, 153.3 ± 16.5 cm height; 53.8 ± 17.9 kg) knee flexion/extension isokinetic dynamometry at 150°/s was performed on each patient's dominant leg in two sessions. The patient was acquainted with the test and performed 1 set of 10 repetitions at 150°/s. A second session of 1 set of 10 repetitions at 150°/ was performed within 24 h of the first. Muscle function outcomes were knee flexion/extension peak torque, average peak torque, and average power. One-sample paired t tests were performed for all muscle function outcomes; intraclass correlation coefficients and r2 values with session two as a function of session one were calculated. Sessions did not differ significantly in knee extension or flexion for any muscle function outcome or the hamstrings to quadriceps ratio. All intraclass correlation coefficients were >0.89 and r2 > 0.79. Test-retest isokinetic dynamometry functional measurements in the knee flexors and extensors at 150°/s are reliable in the burn population and may aid resistance rehabilitation program prescriptions.


Subject(s)
Burns , Resistance Training , Young Adult , Child , Humans , Muscle, Skeletal/physiology , Reproducibility of Results , Burns/rehabilitation , Exercise Therapy , Muscle Strength/physiology
17.
Br J Nutr ; 130(1): 20-32, 2023 07 14.
Article in English | MEDLINE | ID: mdl-36172885

ABSTRACT

Ingestion of mycoprotein stimulates skeletal muscle protein synthesis (MPS) rates to a greater extent than concentrated milk protein when matched for leucine content, potentially attributable to the wholefood nature of mycoprotein. We hypothesised that bolus ingestion of mycoprotein as part of its wholefood matrix would stimulate MPS rates to a greater extent compared with a leucine-matched bolus of protein concentrated from mycoprotein. Twenty-four healthy young (age, 21 ± 2 years; BMI, 24 ± 3 kg.m2) males received primed, continuous infusions of L-[ring-2H5]phenylalanine and completed a bout of unilateral resistance leg exercise before ingesting either 70 g mycoprotein (MYC; 31·4 g protein, 2·5 g leucine; n 12) or 38·2 g of a protein concentrate obtained from mycoprotein (PCM; 28·0 g protein, 2·5 g leucine; n 12). Blood and muscle samples (vastus lateralis) were taken pre- and (4 h) post-exercise/protein ingestion to assess postabsorptive and postprandial myofibrillar protein fractional synthetic rates (FSR) in resting and exercised muscle. Protein ingestion increased plasma essential amino acid and leucine concentrations (P < 0·0001), but more rapidly (both 60 v. 90 min; P < 0·0001) and to greater magnitudes (1367 v. 1346 µmol·l-1 and 298 v. 283 µmol·l-1, respectively; P < 0·0001) in PCM compared with MYC. Protein ingestion increased myofibrillar FSR (P < 0·0001) in both rested (MYC, Δ0·031 ± 0·007 %·h-1 and PCM, Δ0·020 ± 0·008 %·h-1) and exercised (MYC, Δ0·057 ± 0·011 %·h-1 and PCM, Δ0·058 ± 0·012 %·h-1) muscle, with no differences between conditions (P > 0·05). Mycoprotein ingestion results in equivalent postprandial stimulation of resting and post-exercise myofibrillar protein synthesis rates irrespective of whether it is consumed within or without its wholefood matrix.


Subject(s)
Dietary Proteins , Muscle Proteins , Male , Humans , Young Adult , Adult , Leucine , Dietary Proteins/metabolism , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Eating , Postprandial Period
19.
Burns ; 48(4): 824-832, 2022 06.
Article in English | MEDLINE | ID: mdl-35410694

ABSTRACT

OBJECTIVE: Increased body weight has been associated with reduced muscle wasting in the early catabolic phase after a severe burn. Yet, overweight and obese non-burn children often exhibit impaired musculoskeletal function, which may lead to poor physical function (PF). We aimed to determine the association between body mass index (BMI) at discharge and self-reported PF and caregiver proxy-reported PF during recovery of burned children. MATERIALS AND METHODS: This is a retrospective multisite longitudinal study in paediatric burn patients ((8-17 y old at time of burn). PF outcome measures were self-reported mobility, proxy-reported mobility, and upper extremity PF evaluated using PROMIS measures at 6-, 12-, and 24-months after injury. Primary exposure variable was BMI-for-age at discharge. RESULTS: A total of 118 paediatric patients, aged 11.7 ± 3.3 y, with burns covering 37.6 ± 18.8% of their total body surface area (TBSA) and BMI-for-age of 23.1 ± 5.4 kg/m2 at discharge were analyzed. BMI at discharge was not significantly associated with self-reported mobility scores 6 months after burn (beta coefficient =-0.23, p = 0.31), had a positive effect on mobility at 12 months (beta = 0.46, p = 0.05), and no effect at 24 months after injury (beta=-0.10, p = 0.60), when adjusted for burn size. BMI did not have a significant effect on proxy-reported mobility or upper extremity PF. CONCLUSION: A greater BMI at discharge was associated with improved self-reported PF at 12 months after burn but not at 6 months or 24 months, which suggests a faster recovery of PF in paediatric patients of larger body weight. Our data suggests that a larger body weight does not compromise the recovery of PF after burn.


Subject(s)
Burns , Body Mass Index , Burns/complications , Child , Humans , Independent Living , Longitudinal Studies , Obesity/complications , Rehabilitation Research , Retrospective Studies
20.
Am J Physiol Endocrinol Metab ; 322(3): E231-E249, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35037473

ABSTRACT

Factors underpinning the time-course of resistance-type exercise training (RET) adaptations are not fully understood. This study hypothesized that consuming a twice-daily protein-polyphenol beverage (PPB; n = 15; age, 24 ± 1 yr; BMI, 22.3 ± 0.7 kg·m-2) previously shown to accelerate recovery from muscle damage and increase daily myofibrillar protein synthesis (MyoPS) rates would accelerate early (10 sessions) improvements in muscle function and potentiate quadriceps volume and muscle fiber cross-sectional area (fCSA) following 30 unilateral RET sessions in healthy, recreationally active, adults. Versus isocaloric placebo (PLA; n = 14; age, 25 ± 2 yr; BMI, 23.9 ± 1.0 kg·m-2), PPB increased 48 h MyoPS rates after the first RET session measured using deuterated water (2.01 ± 0.15 vs. 1.51 ± 0.16%·day-1, respectively; P < 0.05). In addition, PPB increased isokinetic muscle function over 10 sessions of training relative to the untrained control leg (%U) from 99.9 ± 1.8 pretraining to 107.2 ± 2.4%U at session 10 (vs. 102.6 ± 3.9 to 100.8 ± 2.4%U at session 10 in PLA; interaction P < 0.05). Pre to posttraining, PPB increased type II fCSA (PLA: 120.8 ± 8.2 to 109.5 ± 8.6%U; PPB: 92.8 ± 6.2 to 108.4 ± 9.7%U; interaction P < 0.05), but the gain in quadriceps muscle volume was similar between groups. Similarly, PPB did not further increase peak isometric torque, muscle function, or MyoPS measured posttraining. This suggests that although PPB increases MyoPS and early adaptation, it may not influence longer term adaptations to unilateral RET.NEW & NOTEWORTHY Using a unilateral model of resistance training, we show for the first time that a protein-polyphenol beverage increases initial rates of myofibrillar protein synthesis and promotes early functional improvements. Following a prolonged period of training, this strategy also increases type II fiber hypertrophy and causes large individual variation in gains in quadricep muscle cross-sectional area.


Subject(s)
Muscular Diseases , Resistance Training , Adult , Eating , Humans , Muscle Proteins/metabolism , Muscle Strength , Muscle, Skeletal/metabolism , Muscular Diseases/metabolism , Polyesters/metabolism , Polyphenols , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...