Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Biotechnol Biofuels ; 10: 61, 2017.
Article in English | MEDLINE | ID: mdl-28293291

ABSTRACT

BACKGROUND: Conversion of softwoods into sustainable fuels and chemicals is important for parts of the world where softwoods are the dominant forest species. While they have high theoretical sugar yields, softwoods are amongst the most recalcitrant feedstocks for enzymatic processes, typically requiring both more severe pretreatment conditions and higher enzyme doses than needed for other lignocellulosic feedstocks. Although a number of processes have been proposed for converting softwoods into sugars suitable for fuel and chemical production, there is still a need for a high-yielding, industrially scalable and cost-effective conversion route. RESULTS: We summarise work leading to the development of an efficient process for the enzymatic conversion of radiata pine (Pinus radiata) into wood sugars. The process involves initial pressurised steaming of wood chips under relatively mild conditions (173 °C for 3-72 min) without added acid catalyst. The steamed chips then pass through a compression screw to squeeze out a pressate rich in solubilised hemicelluloses. The pressed chips are disc-refined and wet ball-milled to produce a substrate which is rapidly saccharified using commercially available enzyme cocktails. Adding 0.1% polyethylene glycol during saccharification was found to be particularly effective with these substrates, reducing enzyme usage to acceptable levels, e.g. 5 FPU/g OD substrate. The pressate is separately hydrolysed using acid, providing additional hemicellulose-derived sugars, for an overall sugar yield of 535 kg/ODT chips (76% of theoretical). The total pretreatment energy input is comparable to other processes, with the additional energy for attrition being balanced by a lower thermal energy requirement. This pretreatment strategy produces substrates with low levels of fermentation inhibitors, so the glucose-rich mainline and pressate syrups can be fermented to ethanol without detoxification. The lignin from the process remains comparatively unmodified, as evident from the level of retained ß-ether interunit linkages, providing an opportunity for conversion into saleable co-products. CONCLUSIONS: This process is an efficient route for the enzymatic conversion of radiata pine, and potentially other softwoods, into a sugar syrup suitable for conversion into fuels and chemicals. Furthermore, the process uses standard equipment that is largely proven at commercial scale, de-risking process scale-up.

2.
Bioresour Technol ; 214: 132-137, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27131293

ABSTRACT

In this work, substrates prepared from thermo-mechanical treatment of Pinus radiata chips were vibratory ball milled for different times. In subsequent enzymatic hydrolysis, percent glucan conversion passed through a maximum value at a milling time of around 120min and then declined. Scanning electron microscopy revealed breakage of fibers to porous fragments in which lamellae and fibrils were exposed during ball milling. Over-milling caused compression of the porous fragments to compact globular particles with a granular texture, decreasing accessibility to enzymes. Carbon-13 NMR spectroscopy showed partial loss of interior cellulose in crystallites, leveling off once fiber breakage was complete. A mathematical model based on observed micromorphological changes supports ball milling mechanism. At a low enzyme loading of 2FPU/g of substrate and milling time of 120min gave a total monomeric sugar yield of 306g/kg of pulp which is higher than conventional pretreatment method such as steam exploded wood.


Subject(s)
Pinus/chemistry , Wood/chemistry , Cellulase/chemistry , Cellulase/metabolism , Cellulose/analysis , Cellulose/chemistry , Hydrolysis , Magnetic Resonance Spectroscopy , Microscopy, Electron, Scanning , Models, Theoretical , Pinus/metabolism , Wood/metabolism , beta-Glucosidase/chemistry , beta-Glucosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...