Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
3 Biotech ; 13(12): 398, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37974926

ABSTRACT

Human pathogenic diseases received much attention recently due to their uncontrolled spread of antimicrobial resistance (AMR) which causes several threads every year. Effective alternate antimicrobials are urgently required to combat those disease causing infectious microbes. Halophilic actinobacteria revealed huge potentials and unexplored cultivable/non-cultivable actinobacterial species producing enormous antimicrobials have been proved in several genomics approaches. Potential gene clusters, PKS and NRPKS from Nocardia, Salinospora, Rhodococcus, and Streptomyces have wide range coding genes of secondary metabolites. Biosynthetic pathways identification via various approaches like genome mining, In silico, OSMAC (one strain many compound) analysis provides better identification of knowing the active metabolites using several databases like AMP, APD and CRAMPR, etc. Genome constellations of actinobacteria particularly the prediction of BGCs (Biosynthetic Gene Clusters) to mine the bioactive molecules such as pigments, biosurfactants and few enzymes have been reported for antimicrobial activity. Saltpan, saltlake, lagoon and haloalkali environment exploring potential actinobacterial strains Micromonospora, Kocuria, Pseudonocardia, and Nocardiopsis revealed several acids and ester derivatives with antimicrobial potential. Marine sediments and marine macro organisms have been found as significant population holders of potential actinobacterial strains. Deadly infectious diseases (IDs) including tuberculosis, ventilator-associated pneumonia and Candidiasis, have been targeted by halo-actinobacterial metabolites with promising results. Methicillin resistant Staphylococus aureus and virus like Encephalitic alphaviruses were potentially targeted by halophilic actinobacterial metabolites by the compound Homoseongomycin from sponge associated antinobacterium. In this review, we discuss the potential antimicrobial properties of various biomolecules extracted from the unexplored halophilic actinobacterial strains specifically against human infectious pathogens along with prospective genomic constellations.

2.
Microorganisms ; 10(2)2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35208871

ABSTRACT

Microbial pathogens that cause severe infections and are resistant to drugs are simultaneously becoming more active. This urgently calls for novel effective antibiotics. Organisms from extreme environments are known to synthesize novel bioprospecting molecules for biomedical applications due to their peculiar characteristics of growth and physiological conditions. Antimicrobial developments from hypersaline environments, such as lagoons, estuaries, and salterns, accommodate several halophilic microbes. Salinity is a distinctive environmental factor that continuously promotes the metabolic adaptation and flexibility of halophilic microbes for their survival at minimum nutritional requirements. A genetic adaptation to extreme solar radiation, ionic strength, and desiccation makes them promising candidates for drug discovery. More microbiota identified via sequencing and 'omics' approaches signify the hypersaline environments where compounds are produced. Microbial genera such as Bacillus, Actinobacteria, Halorubrum and Aspergillus are producing a substantial number of antimicrobial compounds. Several strategies were applied for producing novel antimicrobials from halophiles including a consortia approach. Promising results indicate that halophilic microbes can be utilised as prolific sources of bioactive metabolites with pharmaceutical potentialto expand natural product research towards diverse phylogenetic microbial groups which inhabit salterns. The present study reviews interesting antimicrobial compounds retrieved from microbial sources of various saltern environments, with a discussion of their potency in providing novel drugs against clinically drug-resistant microbes.

3.
Mar Biotechnol (NY) ; 20(5): 639-653, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30019186

ABSTRACT

Schizophrenia (SCZ) is one of the brain disorders which affects the thinking and behavioral skills of patients. This disorder comes along with an overproduction of kynurenic acid in the cerebrospinal fluid and the prefrontal cortex of SCZ patients. In this study, marine bacterial compounds were screened for their suitability as antagonists against human kynurenine aminotransferase (hKAT-1) which causes the synthesis of kynurenic acid downstream which ultimately causes the SCZ disorder according to the kynurenic hypothesis of SCZ. The marine actinobacterial compound bonactin shows more promising results than other tested marine compounds such as the histamine H2 blocker famotidine and indole-3-acetic acid (IAC) from docking and in silico toxicological studies carried out here. The obtained results of the Grid-based Ligand Docking with Energetics (Glide) scores of extra-precision (XP) Glide against the target protein hKAT-1 on IAC, famotidine, and bonactin were - 6.581, - 6.500 and - 7.730 kcal/mol where Glide energies were - 29.84, - 28.391, and - 47.565 kcal/mol, respectively. Bonactin is known as an antibacterial and antifungal compound being extracted from a marine Streptomyces sp. Comparing tested compounds against the drug target hKAT-1, bonactin alone showed the best Glide score and Glide energy on the target protein hKAT-1.


Subject(s)
Antipsychotic Agents/chemistry , Antipsychotic Agents/pharmacology , Schizophrenia/prevention & control , Streptomyces/chemistry , Transaminases/antagonists & inhibitors , Binding Sites , Computational Biology , Drug Interactions , Famotidine/chemistry , Famotidine/pharmacology , Furans/chemistry , Furans/pharmacology , Humans , Indoleacetic Acids/chemistry , Indoleacetic Acids/pharmacology , Kynurenic Acid/metabolism , Protein Binding
4.
Mar Pollut Bull ; 101(2): 816-25, 2015 Dec 30.
Article in English | MEDLINE | ID: mdl-26581814

ABSTRACT

Turbinaria ornata mediated silver nanoparticles (TOAg-NPs) were evaluated for antibacterial activity against 15 biofilm forming bacterial isolates. A field study in natural seawater for 60 days showed antifouling activity of TOAg-NPs on stainless steel coupons (SS-304) coated with Apcomin zinc chrome (AZC) primer. Though TOAg-NPs showed broad spectrum of antibacterial activity, the maximum zone of inhibition was with Escherichiacoli (71.9%) and a minimum with Micrococcus sp. (40%) due to the EPS secretion from Gram-positive bacteria. Compared to control coupons (18.9 [ × 10(3)], 67.0 [× 10(3)], 13.5 [ × 10(4)] and 24.7 [ × 10(4)]CFU/cm(2)), experimental biocide coupons (71.0 [ × 10(2)], 32.0 [ × 10(3)], 82.0 [ × 10(3)] and 11.3 [ × 10(4)]CFU/cm(2)) displayed lesser bacterial population density. Toxicity studies revealed 100% mortality for Balanus amphitrite larvae at 250 µg ml(-1) concentration within 24h, while 56.6% recorded for Artemia marina at the same concentration indicating less toxicity to non target species. It proved that AZC+TOAg-NPs prevent biofouling by its Ag-NS affinity and antimicrobial effectivity.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofouling/prevention & control , Metal Nanoparticles , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/toxicity , Artemia/drug effects , Biofilms/drug effects , India , Metal Nanoparticles/toxicity , Microbial Sensitivity Tests , Phaeophyceae/metabolism , Seawater/microbiology , Silver/chemistry , Silver/pharmacology , Thoracica/drug effects , Toxicity Tests , Zinc/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...