Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Signal ; 112: 110910, 2023 12.
Article in English | MEDLINE | ID: mdl-37777103

ABSTRACT

Head and neck squamous cancers are very aggressive tumors often diagnosed in late stages with poor prognosis. HNSCCs are usually treated by a course of radiation (IR) therapy and followed by surgery. These treatment regimens fail to bring a complete response. Molecular signatures in tumors are attributed to this response and an improved understanding of the signaling events could offer new avenues for therapy. Here, we show that P21 activated kinase-1 (PAK1) - an oncogenic signaling serine/threonine kinase, is activated upon exposure to IR and this leads to an accelerated tumorigenic character in HNSCC cells. Our results show that PAK1 is highly expressed in HNSCC cell lines, as compared to normal buccal mucosa cells and when HNSCC cells were exposed to IR, they show activated PAK1 and an aggressive phenotype as determined by in vitro functional assays. PAK1 levels were elevated in HNSCC as compared to adjacent normal oral tissues and our results also show convincing evidence of activated PAK1 in patient tumor samples of post- IR treatment as compared to pre-IR treatment and is associated with poor survival. Pak1 Knockout (KO) clones in HNSCC cells showed that they were more sensitive to IR as compared to wild type (wt) cells. This altered sensitivity to IR was attributed to enhanced DNA damage response modulated by PAK1 in cells. Overall, our results suggest that PAK1 expression in HNSCC could be a critical determinant in IR therapy response and silencing PAK1 is likely to be a treatment modality to improve clinical outcomes.


Subject(s)
Head and Neck Neoplasms , p21-Activated Kinases , Humans , Squamous Cell Carcinoma of Head and Neck , p21-Activated Kinases/genetics , Cell Line, Tumor , Radiation, Ionizing , Head and Neck Neoplasms/radiotherapy
2.
ACS Cent Sci ; 8(2): 282-293, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35233459

ABSTRACT

The functioning of proteins is intimately tied to their fluctuations in the native ensemble. The structural-energetic features that determine fluctuation amplitudes and hence the shape of the underlying landscape, which in turn determine the magnitude of the functional output, are often confounded by multiple variables. Here, we employ the FF1 domain from human p190A RhoGAP protein as a model system to uncover the molecular basis for phosphorylation of a buried tyrosine, which is crucial to the transcriptional activity associated with transcription factor TFII-I. Combining spectroscopy, calorimetry, statistical-mechanical modeling, molecular simulations, and in vitro phosphorylation assays, we show that the FF1 domain samples a diverse array of conformations in its native ensemble, some of which are phosphorylation-competent. Upon eliminating unfavorable charge-charge interactions through a single charge-reversal (K53E) or charge-neutralizing (K53Q) mutation, we observe proportionately lower phosphorylation extents due to the altered structural coupling, damped equilibrium fluctuations, and a more compact native ensemble. We thus establish a conformational selection mechanism for phosphorylation in the FF1 domain with K53 acting as a "gatekeeper", modulating the solvent exposure of the buried tyrosine. Our work demonstrates the role of unfavorable charge-charge interactions in governing functional events through the modulation of native ensemble characteristics, a feature that could be prevalent in ordered protein domains.

3.
Biochim Biophys Acta Rev Cancer ; 1877(1): 188668, 2022 01.
Article in English | MEDLINE | ID: mdl-34896436

ABSTRACT

Tamoxifen is a commonly used drug in the treatment of ER + ve breast cancers since 1970. However, development of resistance towards tamoxifen limits its remarkable clinical success. In this review, we have attempted to provide a brief overview of multiple mechanism that may lead to tamoxifen resistance, with a special emphasis on the roles played by the oncogenic kinase- PAK1. Analysing the genomic data sets available in the cBioPortal, we found that PAK1 gene amplification significantly affects the Relapse Free Survival of the ER + ve breast cancer patients. While PAK1 is known to promote tamoxifen resistance by phosphorylating ERα at Ser305, existing literature suggests that PAK1 can fuel up tamoxifen resistance obliquely by phosphorylating other substrates. We have summarised some of the approaches in the mass spectrometry based proteomics, which would enable us to study the tamoxifen resistance specific phosphoproteomic landscape of PAK1. We also propose that elucidating the multiple mechanisms by which PAK1 promotes tamoxifen resistance might help us discover druggable targets and biomarkers.


Subject(s)
Breast Neoplasms , Tamoxifen , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Drug Resistance, Neoplasm/genetics , Female , Humans , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , p21-Activated Kinases/genetics
4.
Cancer Invest ; 39(1): 98-113, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33251876

ABSTRACT

Glioblastomas are the primary malignant tumors of brain tissues with poor prognosis and highly invasive phenotypes. Till now Ki-67 LI has emerged as a well-studied proliferation marker that aids in tumor grading, but labeling index alone cannot predict overall survival in gliomas. P21 activated kinase 1 (PAK1) - a serine/threonine kinase has been shown to function as downstream nodule for various oncogenic signaling pathways that promote neoplastic changes. This study is designed to evaluate the expression of PAK1 across various grades and its correlation with Ki-67 LI and overall survival rates among a total number of 140 clinical brain tumors of glioma patients. We also studied the activation status of phospho PAK1 in glioma tissues and established the role of PAK1 in proliferation of glioblatoma cell lines under γ-irradiation.This study provides molecular evidence signifying the role of PAK1 and its activation status in the progression of Gliomas to more aggressive phenotypes.


Subject(s)
Brain Neoplasms/enzymology , Glioma/enzymology , p21-Activated Kinases/metabolism , Adult , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/physiology , Female , Glioma/genetics , Glioma/pathology , Humans , Male , Middle Aged , Young Adult
5.
Biol Chem ; 399(4): 361-374, 2018 03 28.
Article in English | MEDLINE | ID: mdl-29337693

ABSTRACT

Human phospholipid scramblase 3 (hPLSCR3) is a single pass transmembrane protein that plays a vital role in fat metabolism, mitochondrial function, structure, maintenance and apoptosis. The mechanism of action of scramblases remains still unknown, and the role of scramblases in phospholipid translocation is heavily debated. hPLSCR3 is the only member of scramblase family localized to mitochondria and is involved in cardiolipin translocation at the mitochondrial membrane. Direct biochemical evidence of phospholipid translocation by hPLSCR3 is yet to be reported. Functional assay in synthetic proteoliposomes upon Ca2+ and Mg2+ revealed that, apart from cardiolipin, recombinant hPLSCR3 translocates aminophospholipids such as NBD-PE and NBD-PS but not neutral phospholipids. Point mutation in hPLSCR3 (F258V) resulted in decreased Ca2+ binding affinity. Functional assay with F258V-hPLSCR3 led to ~50% loss in scramblase activity in the presence of Ca2+ and Mg2+. Metal ion-induced conformational changes were monitored by intrinsic tryptophan fluorescence, circular dichroism, surface hydrophobicity changes and aggregation studies. Our results revealed that Ca2+ and Mg2+ bind to hPLSCR3 and trigger conformational changes mediated by aggregation. In summary, we suggest that the metal ion-induced conformational change and the aggregation of the protein are essential for the phospholipid translocation by hPLSCR3.


Subject(s)
Calcium/metabolism , Magnesium/metabolism , Phospholipid Transfer Proteins/metabolism , Phospholipids/metabolism , Binding Sites , Calcium/chemistry , Humans , Magnesium/chemistry , Phospholipid Transfer Proteins/chemistry , Phospholipid Transfer Proteins/genetics , Phospholipids/chemistry , Point Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...