Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 23(20)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37896703

ABSTRACT

This study presents the concept of a computationally efficient machine learning (ML) model for diagnosing and monitoring Parkinson's disease (PD) using rest-state EEG signals (rs-EEG) from 20 PD subjects and 20 normal control (NC) subjects at a sampling rate of 128 Hz. Based on the comparative analysis of the effectiveness of entropy calculation methods, fuzzy entropy showed the best results in diagnosing and monitoring PD using rs-EEG, with classification accuracy (ARKF) of ~99.9%. The most important frequency range of rs-EEG for PD-based diagnostics lies in the range of 0-4 Hz, and the most informative signals were mainly received from the right hemisphere of the head. It was also found that ARKF significantly decreased as the length of rs-EEG segments decreased from 1000 to 150 samples. Using a procedure for selecting the most informative features, it was possible to reduce the computational costs of classification by 11 times, while maintaining an ARKF ~99.9%. The proposed method can be used in the healthcare internet of things (H-IoT), where low-performance edge devices can implement ML sensors to enhance human resilience to PD.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/diagnosis , Entropy , Electroencephalography/methods , Machine Learning , Support Vector Machine
2.
Diagnostics (Basel) ; 13(18)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37761354

ABSTRACT

Diagnosing Intracranial Hemorrhage (ICH) at an early stage is difficult since it affects the blood vessels in the brain, often resulting in death. We propose an ensemble of Convolutional Neural Networks (CNNs) combining Squeeze and Excitation-based Residual Networks with the next dimension (SE-ResNeXT) and Long Short-Term Memory (LSTM) Networks in order to address this issue. This research work primarily used data from the Radiological Society of North America (RSNA) brain CT hemorrhage challenge dataset and the CQ500 dataset. Preprocessing and data augmentation are performed using the windowing technique in the proposed work. The ICH is then classified using ensembled CNN techniques after being preprocessed, followed by feature extraction in an automatic manner. ICH is classified into the following five types: epidural, intraventricular, subarachnoid, intra-parenchymal, and subdural. A gradient-weighted Class Activation Mapping method (Grad-CAM) is used for identifying the region of interest in an ICH image. A number of performance measures are used to compare the experimental results with various state-of-the-art algorithms. By achieving 99.79% accuracy with an F-score of 0.97, the proposed model proved its efficacy in detecting ICH compared to other deep learning models. The proposed ensembled model can classify epidural, intraventricular, subarachnoid, intra-parenchymal, and subdural hemorrhages with an accuracy of 99.89%, 99.65%, 98%, 99.75%, and 99.88%. Simulation results indicate that the suggested approach can categorize a variety of intracranial bleeding types. By implementing the ensemble deep learning technique using the SE-ResNeXT and LSTM models, we achieved significant classification accuracy and AUC scores.

3.
PLoS One ; 18(4): e0284021, 2023.
Article in English | MEDLINE | ID: mdl-37018344

ABSTRACT

Different diseases are observed in vegetables, fruits, cereals, and commercial crops by farmers and agricultural experts. Nonetheless, this evaluation process is time-consuming, and initial symptoms are primarily visible at microscopic levels, limiting the possibility of an accurate diagnosis. This paper proposes an innovative method for identifying and classifying infected brinjal leaves using Deep Convolutional Neural Networks (DCNN) and Radial Basis Feed Forward Neural Networks (RBFNN). We collected 1100 images of brinjal leaf disease that were caused by five different species (Pseudomonas solanacearum, Cercospora solani, Alternaria melongenea, Pythium aphanidermatum, and Tobacco Mosaic Virus) and 400 images of healthy leaves from India's agricultural form. First, the original plant leaf is preprocessed by a Gaussian filter to reduce the noise and improve the quality of the image through image enhancement. A segmentation method based on expectation and maximization (EM) is then utilized to segment the leaf's-diseased regions. Next, the discrete Shearlet transform is used to extract the main features of the images such as texture, color, and structure, which are then merged to produce vectors. Lastly, DCNN and RBFNN are used to classify brinjal leaves based on their disease types. The DCNN achieved a mean accuracy of 93.30% (with fusion) and 76.70% (without fusion) compared to the RBFNN (82%-without fusion, 87%-with fusion) in classifying leaf diseases.


Subject(s)
Solanum melongena , Image Processing, Computer-Assisted/methods , Neural Networks, Computer , Image Enhancement , Plant Leaves
4.
Bioengineering (Basel) ; 10(2)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36829661

ABSTRACT

The continuous monitoring of respiratory rate (RR) and oxygen saturation (SpO2) is crucial for patients with cardiac, pulmonary, and surgical conditions. RR and SpO2 are used to assess the effectiveness of lung medications and ventilator support. In recent studies, the use of a photoplethysmogram (PPG) has been recommended for evaluating RR and SpO2. This research presents a novel method of estimating RR and SpO2 using machine learning models that incorporate PPG signal features. A number of established methods are used to extract meaningful features from PPG. A feature selection approach was used to reduce the computational complexity and the possibility of overfitting. There were 19 models trained for both RR and SpO2 separately, from which the most appropriate regression model was selected. The Gaussian process regression model outperformed all the other models for both RR and SpO2 estimation. The mean absolute error (MAE) for RR was 0.89, while the root-mean-squared error (RMSE) was 1.41. For SpO2, the model had an RMSE of 0.98 and an MAE of 0.57. The proposed system is a state-of-the-art approach for estimating RR and SpO2 reliably from PPG. If RR and SpO2 can be consistently and effectively derived from the PPG signal, patients can monitor their RR and SpO2 at a cheaper cost and with less hassle.

5.
Comput Methods Programs Biomed ; 215: 106646, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35093645

ABSTRACT

BACKGROUND: Human emotions greatly affect the actions of a person. The automated emotion recognition has applications in multiple domains such as health care, e-learning, surveillance, etc. The development of computer-aided diagnosis (CAD) tools has led to the automated recognition of human emotions. OBJECTIVE: This review paper provides an insight into various methods employed using electroencephalogram (EEG), facial, and speech signals coupled with multi-modal emotion recognition techniques. In this work, we have reviewed most of the state-of-the-art papers published on this topic. METHOD: This study was carried out by considering the various emotion recognition (ER) models proposed between 2016 and 2021. The papers were analysed based on methods employed, classifier used and performance obtained. RESULTS: There is a significant rise in the application of deep learning techniques for ER. They have been widely applied for EEG, speech, facial expression, and multimodal features to develop an accurate ER model. CONCLUSION: Our study reveals that most of the proposed machine and deep learning-based systems have yielded good performances for automated ER in a controlled environment. However, there is a need to obtain high performance for ER even in an uncontrolled environment.


Subject(s)
Electroencephalography , Facial Expression , Emotions , Humans , Speech
6.
Sensors (Basel) ; 21(2)2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33440914

ABSTRACT

The authors wish to make the following corrections to this paper [...].

7.
PLoS One ; 15(11): e0242014, 2020.
Article in English | MEDLINE | ID: mdl-33211717

ABSTRACT

Parkinson's disease (PD) is a severe incurable neurological disorder. It is mostly characterized by non-motor symptoms like fatigue, dementia, anxiety, speech and communication problems, depression, and so on. Electroencephalography (EEG) play a key role in the detection of the true emotional state of a person. Various studies have been proposed for the detection of emotional impairment in PD using filtering, Fourier transforms, wavelet transforms, and non-linear methods. However, these methods require a selection of basis and are confined in terms of accuracy. In this paper, tunable Q wavelet transform (TQWT) is proposed for the classification of emotions in PD and normal controls (NC). EEG signals of six emotional states namely happiness, sadness, fear, anger, surprise, and disgust are studied. Power, entropy, and statistical moments based features are elicited from the highpass and lowpass sub-bands of TQWT. Six features selected by statistical analysis are classified with a k-nearest neighbor, probabilistic neural network, random forest, decision tree, and extreme learning machine. Three performance measures are obtained, maximum mean accuracy, sensitivity, and specificity of 96.16%, 97.59%, and 88.51% for NC and 93.88%, 96.33%, and 81.67% for PD are achieved with a probabilistic neural network. The proposed method proved to be very effective such that it classifies emotions in PD and could be used as a potential tool for diagnosing emotional impairment in hospitals.


Subject(s)
Brain/physiopathology , Emotions/physiology , Parkinson Disease/physiopathology , Algorithms , Electroencephalography/methods , Humans , Machine Learning , Neural Networks, Computer , Sensitivity and Specificity , Wavelet Analysis
8.
Brain Sci ; 10(10)2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32992930

ABSTRACT

Emotion assessment in stroke patients gives meaningful information to physiotherapists to identify the appropriate method for treatment. This study was aimed to classify the emotions of stroke patients by applying bispectrum features in electroencephalogram (EEG) signals. EEG signals from three groups of subjects, namely stroke patients with left brain damage (LBD), right brain damage (RBD), and normal control (NC), were analyzed for six different emotional states. The estimated bispectrum mapped in the contour plots show the different appearance of nonlinearity in the EEG signals for different emotional states. Bispectrum features were extracted from the alpha (8-13) Hz, beta (13-30) Hz and gamma (30-49) Hz bands, respectively. The k-nearest neighbor (KNN) and probabilistic neural network (PNN) classifiers were used to classify the six emotions in LBD, RBD and NC. The bispectrum features showed statistical significance for all three groups. The beta frequency band was the best performing EEG frequency-sub band for emotion classification. The combination of alpha to gamma bands provides the highest classification accuracy in both KNN and PNN classifiers. Sadness emotion records the highest classification, which was 65.37% in LBD, 71.48% in RBD and 75.56% in NC groups.

9.
PLoS One ; 11(2): e0149003, 2016.
Article in English | MEDLINE | ID: mdl-26859884

ABSTRACT

In recent years, real-time face recognition has been a major topic of interest in developing intelligent human-machine interaction systems. Over the past several decades, researchers have proposed different algorithms for facial expression recognition, but there has been little focus on detection in real-time scenarios. The present work proposes a new algorithmic method of automated marker placement used to classify six facial expressions: happiness, sadness, anger, fear, disgust, and surprise. Emotional facial expressions were captured using a webcam, while the proposed algorithm placed a set of eight virtual markers on each subject's face. Facial feature extraction methods, including marker distance (distance between each marker to the center of the face) and change in marker distance (change in distance between the original and new marker positions), were used to extract three statistical features (mean, variance, and root mean square) from the real-time video sequence. The initial position of each marker was subjected to the optical flow algorithm for marker tracking with each emotional facial expression. Finally, the extracted statistical features were mapped into corresponding emotional facial expressions using two simple non-linear classifiers, K-nearest neighbor and probabilistic neural network. The results indicate that the proposed automated marker placement algorithm effectively placed eight virtual markers on each subject's face and gave a maximum mean emotion classification rate of 96.94% using the probabilistic neural network.


Subject(s)
Biometric Identification/methods , Facial Expression , Algorithms , Artificial Intelligence , Emotions , Eye/anatomy & histology , Face/anatomy & histology , Humans , Models, Statistical
10.
Behav Brain Funct ; 10: 12, 2014 Apr 09.
Article in English | MEDLINE | ID: mdl-24716619

ABSTRACT

OBJECTIVE: While Parkinson's disease (PD) has traditionally been described as a movement disorder, there is growing evidence of disruption in emotion information processing associated with the disease. The aim of this study was to investigate whether there are specific electroencephalographic (EEG) characteristics that discriminate PD patients and normal controls during emotion information processing. METHOD: EEG recordings from 14 scalp sites were collected from 20 PD patients and 30 age-matched normal controls. Multimodal (audio-visual) stimuli were presented to evoke specific targeted emotional states such as happiness, sadness, fear, anger, surprise and disgust. Absolute and relative power, frequency and asymmetry measures derived from spectrally analyzed EEGs were subjected to repeated ANOVA measures for group comparisons as well as to discriminate function analysis to examine their utility as classification indices. In addition, subjective ratings were obtained for the used emotional stimuli. RESULTS: Behaviorally, PD patients showed no impairments in emotion recognition as measured by subjective ratings. Compared with normal controls, PD patients evidenced smaller overall relative delta, theta, alpha and beta power, and at bilateral anterior regions smaller absolute theta, alpha, and beta power and higher mean total spectrum frequency across different emotional states. Inter-hemispheric theta, alpha, and beta power asymmetry index differences were noted, with controls exhibiting greater right than left hemisphere activation. Whereas intra-hemispheric alpha power asymmetry reduction was exhibited in patients bilaterally at all regions. Discriminant analysis correctly classified 95.0% of the patients and controls during emotional stimuli. CONCLUSION: These distributed spectral powers in different frequency bands might provide meaningful information about emotional processing in PD patients.


Subject(s)
Brain/physiopathology , Emotions/physiology , Functional Laterality/physiology , Parkinson Disease/physiopathology , Aged , Electroencephalography , Fear/physiology , Female , Humans , Male , Middle Aged , Parkinson Disease/psychology , Recognition, Psychology/physiology
11.
Biomed Tech (Berl) ; 59(3): 241-9, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24402883

ABSTRACT

Emotional intelligence is one of the key research areas in human-computer interaction. This paper reports the development of an emotion recognition system using facial electromyogram (EMG) signals focusing the ambiguity on the frequency ranges used by different research works. The six emotional states (happiness, sadness, fear, surprise, disgust, and neutral) were elicited in 60 subjects using audio visual stimuli. Statistical features were extracted from the signals at high, medium, low, and very low frequency levels. They were then classified using four classifiers - naïve Bayes, regression tree, K-nearest neighbor, and fuzzy K-nearest neighbor, and the performance of the system at the different frequency levels were studied using three metrics, namely, % accuracy, sensitivity, and specificity. The post hoc tests in analysis of variance (ANOVA) indicate that the features contain significant emotional information at the very low-frequency range (<0.08 Hz). Similarly, the performance metrics of the classifiers also ensure better recognition rate at very low-frequency range. Though this range of frequency has not been used by researchers, the results of this work indicate that it should not be ignored. Further investigation of the very low frequency range to identify emotional information is still in progress.


Subject(s)
Algorithms , Electromyography/methods , Emotions/classification , Emotions/physiology , Facial Expression , Facial Muscles/physiology , Pattern Recognition, Automated/methods , Adolescent , Adult , Aged , Artificial Intelligence , Biometry/methods , Child , Female , Humans , Male , Middle Aged , Psychometrics/methods , Reproducibility of Results , Sensitivity and Specificity , Young Adult
12.
J Phys Ther Sci ; 25(7): 753-9, 2013 Jul.
Article in English | MEDLINE | ID: mdl-24259846

ABSTRACT

[Purpose] Intelligent emotion assessment systems have been highly successful in a variety of applications, such as e-learning, psychology, and psycho-physiology. This study aimed to assess five different human emotions (happiness, disgust, fear, sadness, and neutral) using heart rate variability (HRV) signals derived from an electrocardiogram (ECG). [Subjects] Twenty healthy university students (10 males and 10 females) with a mean age of 23 years participated in this experiment. [Methods] All five emotions were induced by audio-visual stimuli (video clips). ECG signals were acquired using 3 electrodes and were preprocessed using a Butterworth 3rd order filter to remove noise and baseline wander. The Pan-Tompkins algorithm was used to derive the HRV signals from ECG. Discrete wavelet transform (DWT) was used to extract statistical features from the HRV signals using four wavelet functions: Daubechies6 (db6), Daubechies7 (db7), Symmlet8 (sym8), and Coiflet5 (coif5). The k-nearest neighbor (KNN) and linear discriminant analysis (LDA) were used to map the statistical features into corresponding emotions. [Results] KNN provided the maximum average emotion classification rate compared to LDA for five emotions (sadness - 50.28%; happiness - 79.03%; fear - 77.78%; disgust - 88.69%; and neutral - 78.34%). [Conclusion] The results of this study indicate that HRV may be a reliable indicator of changes in the emotional state of subjects and provides an approach to the development of a real-time emotion assessment system with a higher reliability than other systems.

13.
J Phys Ther Sci ; 25(9): 1055-8, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24259914

ABSTRACT

[Purpose] In earlier studies of driver distraction, researchers classified distraction into two levels (not distracted, and distracted). This study classified four levels of distraction (neutral, low, medium, high). [Subjects and Methods] Fifty Asian subjects (n=50, 43 males, 7 females), age range 20-35 years, who were free from any disease, participated in this study. Wireless EEG signals were recorded by 14 electrodes during four types of distraction stimuli (Global Position Systems (GPS), music player, short message service (SMS), and mental tasks). We derived the amplitude spectrum of three different frequency bands, theta, alpha, and beta of EEG. Then, based on fusion of discrete wavelet packet transforms and fast fourier transform yield, we extracted two features (power spectral density, spectral centroid frequency) of different wavelets (db4, db8, sym8, and coif5). Mean ± SD was calculated and analysis of variance (ANOVA) was performed. A fuzzy inference system classifier was applied to different wavelets using the two extracted features. [Results] The results indicate that the two features of sym8 posses highly significant discrimination across the four levels of distraction, and the best average accuracy achieved by the subtractive fuzzy classifier was 79.21% using the power spectral density feature extracted using the sym8 wavelet. [Conclusion] These findings suggest that EEG signals can be used to monitor distraction level intensity in order to alert drivers to high levels of distraction.

14.
Dement Geriatr Cogn Disord ; 36(3-4): 179-96, 2013.
Article in English | MEDLINE | ID: mdl-23899462

ABSTRACT

OBJECTIVE: Patients suffering from stroke have a diminished ability to recognize emotions. This paper presents a review of neuropsychological studies that investigated the basic emotion processing deficits involved in individuals with interhemispheric brain (right, left) damage and normal controls, including processing mode (perception) and communication channels (facial, prosodic-intonational, lexical-verbal). METHODS: An electronic search was conducted using specific keywords for studies investigating emotion recognition in brain damage patients. The PubMed database was searched until March 2012 as well as citations and reference lists. 92 potential articles were identified. RESULTS: The findings showed that deficits in emotion perception were more frequently observed in individuals with right brain damage than those with left brain damage when processing facial, prosodic and lexical emotional stimuli. CONCLUSION: These findings suggest that the right hemisphere has a unique contribution in emotional processing and provide support for the right hemisphere emotion hypothesis. SIGNIFICANCE: This robust deficit in emotion recognition has clinical significance. The extent of emotion recognition deficit in brain damage patients appears to be correlated with a variety of interpersonal difficulties such as complaints of frustration in social relations, feelings of social discomfort, desire to connect with others, feelings of social disconnection and use of controlling behaviors.


Subject(s)
Emotions/physiology , Recognition, Psychology/physiology , Stroke/psychology , Communication , Decision Making , Empathy , Facial Expression , Humans , Neuropsychological Tests , Social Perception , Treatment Outcome
15.
Biomed Eng Online ; 12: 44, 2013 May 16.
Article in English | MEDLINE | ID: mdl-23680041

ABSTRACT

BACKGROUND: Identifying the emotional state is helpful in applications involving patients with autism and other intellectual disabilities; computer-based training, human computer interaction etc. Electrocardiogram (ECG) signals, being an activity of the autonomous nervous system (ANS), reflect the underlying true emotional state of a person. However, the performance of various methods developed so far lacks accuracy, and more robust methods need to be developed to identify the emotional pattern associated with ECG signals. METHODS: Emotional ECG data was obtained from sixty participants by inducing the six basic emotional states (happiness, sadness, fear, disgust, surprise and neutral) using audio-visual stimuli. The non-linear feature 'Hurst' was computed using Rescaled Range Statistics (RRS) and Finite Variance Scaling (FVS) methods. New Hurst features were proposed by combining the existing RRS and FVS methods with Higher Order Statistics (HOS). The features were then classified using four classifiers - Bayesian Classifier, Regression Tree, K- nearest neighbor and Fuzzy K-nearest neighbor. Seventy percent of the features were used for training and thirty percent for testing the algorithm. RESULTS: Analysis of Variance (ANOVA) conveyed that Hurst and the proposed features were statistically significant (p < 0.001). Hurst computed using RRS and FVS methods showed similar classification accuracy. The features obtained by combining FVS and HOS performed better with a maximum accuracy of 92.87% and 76.45% for classifying the six emotional states using random and subject independent validation respectively. CONCLUSIONS: The results indicate that the combination of non-linear analysis and HOS tend to capture the finer emotional changes that can be seen in healthy ECG data. This work can be further fine tuned to develop a real time system.


Subject(s)
Electrocardiography/methods , Emotions , Nonlinear Dynamics , Signal Processing, Computer-Assisted , Adolescent , Adult , Aged , Child , Female , Humans , Middle Aged , Statistics as Topic , Young Adult
16.
Australas Phys Eng Sci Med ; 36(2): 243-50, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23719977

ABSTRACT

Driver drowsiness has been one of the major causes of road accidents that lead to severe trauma, such as physical injury, death, and economic loss, which highlights the need to develop a system that can alert drivers of their drowsy state prior to accidents. Researchers have therefore attempted to develop systems that can determine driver drowsiness using the following four measures: (1) subjective ratings from drivers, (2) vehicle-based measures, (3) behavioral measures and (4) physiological measures. In this study, we analyzed the various factors that contribute towards drowsiness. A total of 15 male subjects were asked to drive for 2 h at three different times of the day (00:00-02:00, 03:00-05:00 and 15:00-17:00 h) when the circadian rhythm is low. The less intrusive physiological signal measurements, ECG and EMG, are analyzed during this driving task. Statistically significant differences in the features of ECG and sEMG signals were observed between the alert and drowsy states of the drivers during different times of day. In the future, these physiological measures can be fused with vision-based measures for the development of an efficient drowsiness detection system.


Subject(s)
Automobile Driving , Brain/physiology , Electrocardiography/methods , Electroencephalography/methods , Heart Rate/physiology , Polysomnography/methods , Sleep Stages/physiology , Adult , Algorithms , Circadian Rhythm/physiology , Humans , Male , Pattern Recognition, Automated/methods , Reproducibility of Results , Sensitivity and Specificity , Young Adult
17.
Sensors (Basel) ; 12(12): 16937-53, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23223151

ABSTRACT

In recent years, driver drowsiness has been one of the major causes of road accidents and can lead to severe physical injuries, deaths and significant economic losses. Statistics indicate the need of a reliable driver drowsiness detection system which could alert the driver before a mishap happens. Researchers have attempted to determine driver drowsiness using the following measures: (1) vehicle-based measures; (2) behavioral measures and (3) physiological measures. A detailed review on these measures will provide insight on the present systems, issues associated with them and the enhancements that need to be done to make a robust system. In this paper, we review these three measures as to the sensors used and discuss the advantages and limitations of each. The various ways through which drowsiness has been experimentally manipulated is also discussed. We conclude that by designing a hybrid drowsiness detection system that combines non-intrusive physiological measures with other measures one would accurately determine the drowsiness level of a driver. A number of road accidents might then be avoided if an alert is sent to a driver that is deemed drowsy.


Subject(s)
Automobile Driving , Sleep Stages/physiology , Accidents, Traffic , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...