Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 42(4): 112280, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36995935

ABSTRACT

In metazoan cells, DNA replication initiates from thousands of genomic loci scattered throughout the genome called DNA replication origins. Origins are strongly associated with euchromatin, particularly open genomic regions such as promoters and enhancers. However, over a third of transcriptionally silent genes are associated with DNA replication initiation. Most of these genes are bound and repressed by the Polycomb repressive complex-2 (PRC2) through the repressive H3K27me3 mark. This is the strongest overlap observed for a chromatin regulator with replication origin activity. Here, we asked whether Polycomb-mediated gene repression is functionally involved in recruiting DNA replication origins to transcriptionally silent genes. We show that the absence of EZH2, the catalytic subunit of PRC2, results in increased DNA replication initiation, specifically in the vicinity of EZH2 binding sites. The increase in DNA replication initiation does not correlate with transcriptional de-repression or the acquisition of activating histone marks but does correlate with loss of H3K27me3 from bivalent promoters.


Subject(s)
Enhancer of Zeste Homolog 2 Protein , Histones , Animals , Histones/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Chromatin , DNA Replication/genetics , DNA
2.
Adv Sci (Weinh) ; 9(26): e2201947, 2022 09.
Article in English | MEDLINE | ID: mdl-35861401

ABSTRACT

Bacterial nanocellulose (BNC) is usually produced as randomly-organized highly pure cellulose nanofibers films. Its high water-holding capacity, porosity, mechanical strength, and biocompatibility make it unique. Ordered structures are found in nature and the properties appearing upon aligning polymers fibers inspire everyone to achieve highly aligned BNC (A-BNC) films. This work takes advantage of natural bacteria biosynthesis in a reproducible and straightforward approach. Bacteria confined and statically incubated biosynthesized BNC nanofibers in a single direction without entanglement. The obtained film is highly oriented within the total volume confirmed by polarization-resolved second-harmonic generation signal and Small Angle X-ray Scattering. The biosynthesis approach is improved by reusing the bacterial substrates to obtain A-BNC reproducibly and repeatedly. The suitability of A-BNC as cell carriers is confirmed by adhering to and growing fibroblasts in the substrate. Finally, the thermal conductivity is evaluated by two independent approaches, i.e., using the well-known 3ω-method and a recently developed contactless thermoreflectance approach, confirming a thermal conductivity of 1.63 W mK-1 in the direction of the aligned fibers versus 0.3 W mK-1 perpendicularly. The fivefold increase in thermal conductivity of BNC in the alignment direction forecasts the potential of BNC-based devices outperforming some other natural polymer and synthetic materials.


Subject(s)
Bacteria , Cellulose , Cellulose/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...