Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Open ; 12(2)2023 02 15.
Article in English | MEDLINE | ID: mdl-36648245

ABSTRACT

Flying foxes of the genus Pteropus are amongst the largest fruit bats and potential long-range pollinators and seed dispersers in the paleotropics. Pteropus giganteus (currently P. medius) is the only flying fox that is distributed throughout the Indian mainland, including in urban and rural areas. Using GPS telemetry, we mapped the home ranges and examined flight patterns in P. giganteus males across moon phases in a semi-urban landscape in southern India. Home range differed between the tracked males (n=4), likely due to differences in their experience in the landscape. We found that nightly time spent outside the roost, distance commuted and the number of sites visited by tracked individuals did not differ significantly between moon phases. In 61% of total tracked nights across bats, the first foraging site was within 45˚ of the emergence direction. At the colony-level, scan-based observations showed emergence flights were mostly in the northeast (27%), west (22%) and southwest (19%) directions that could potentially be related to the distribution of foraging resources. The movement ecology of fruit bats in relation to the pollination and seed dispersal services they provide requires to be investigated in future studies. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Chiroptera , Homing Behavior , Male , Animals , Humans , Moon , India
2.
Brain Behav Evol ; 98(2): 76-92, 2023.
Article in English | MEDLINE | ID: mdl-36580908

ABSTRACT

Pteropodidae is the only phytophagous bat family that predominantly depends on visual and olfactory cues for orientation and foraging. During daytime, pteropodids of different species roost in sites with varying light exposure. Pteropodids have larger eyes relative to body size than insectivorous bats. Retinal topography has been studied in less than 10% of the approximately 200 pteropodid species, a behavioural estimation of spatial resolution is available only for Pteropus giganteus, and little is known about the relationship between their roost site preference and visual ecology. We present retinal ganglion cell topographic maps and anatomical estimates of spatial resolution in three southern Indian pteropodid species with different roosting preferences. Ganglion cell densities are between 1,000 and 2,000 cells/mm2 in the central retina and lower in the dorsal and ventral periphery. All three species have a temporal area in the retina with peak ganglion cell densities of 4,600-6,600 cells/mm2. As a result, the foliage-roosting Cynopterus sphinx and the cave-roosting Rousettus leschenaultii have similar anatomical resolution (2.7 and 2.8 cycles/degree, respectively). The anatomical estimate for the larger tree-roosting P. giganteus (4.0 cycles/degree) is higher than the spatial resolution determined earlier in behavioural tests. Like other pteropodids and unlike other vertebrates, all three species have choroidal papillae. Based on 15 pteropodid species studied to date, we find no relationship between roost type and eye size or visual acuity. For a general understanding of the sensory ecology of pteropodids that perform key ecosystem services in the tropics, it will be essential to study additional species.


Subject(s)
Chiroptera , Retinal Ganglion Cells , Animals , Ecosystem , Retina , Visual Acuity
3.
Article in English | MEDLINE | ID: mdl-33537858

ABSTRACT

Fruit-feeding pteropodid bats roost under varying light conditions. Some roost in trees with high exposure to daylight (> 1000 lx), while others roost in dark caves (< 0.1 lx). To understand the effect of ambient light intensity and moon phase on flight activity, we examined flight times across five lunar cycles in three pteropodid species whose roosts differ in daylight exposure. We found significant interspecific differences in flight emergence and termination times. All species initiated flights after sunset but Rousettus leschenaultii, which typically roosts in caves, delayed emergence (40 ± 11 min) more than the two tree-roosting species Pteropus giganteus (16 ± 6 min) and Cynopterus sphinx (19 ± 7 min). R. leschenaultii terminated flights earlier (30 ± 7 min before sunrise) than P. giganteus (11 ± 11 min) and C. sphinx (16 ± 10 min). All individuals from P. giganteus and C. sphinx roosts emerged within less than an hour, while emergence times were more spread out in the R. leschenaultii colony. Peak emergence times differed across moon phases in the cave-roosting R. leschenaultii but not in the other species. Flight activity in R. leschenaultii is restricted to comparatively lower light levels than the tree-roosting species. The observed interspecific differences suggest that bat species, sharing same landscapes may respond differently to light pollution.


Subject(s)
Behavior, Animal/physiology , Caves , Chiroptera/physiology , Ecosystem , Flight, Animal/physiology , Animals , Moon , Photoperiod , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...