Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37577515

ABSTRACT

Impaired social interaction is one of the core deficits of autism spectrum disorder (ASD) and may result from social interactions being less rewarding. How the nucleus accumbens (NAc), as a key hub of reward circuitry, encodes social interaction and whether these representations are altered in ASD remain poorly understood. We identified NAc ensembles encoding social interactions by calcium imaging using miniaturized microscopy. NAc population activity, specifically D1 receptor-expressing medium spiny neurons (D1-MSNs) activity, predicted social interaction epochs. Despite a high turnover of NAc neurons modulated by social interaction, we found a stable population code for social interaction in NAc which was dramatically degraded in Cntnap2-/- mouse model of ASD. Surprisingly, non-specific optogenetic inhibition of NAc core neurons increased social interaction time and significantly improved sociability in Cntnap2-/- mice. Inhibition of D1- or D2-MSNs showed reciprocal effects, with D1 inhibition decreasing social interaction and D2 inhibition increasing interaction. Therefore, social interactions are preferentially, specifically and dynamically encoded by NAc neurons and social representations are degraded in this autism model.

SELECTION OF CITATIONS
SEARCH DETAIL
...