Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; : e202410517, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896017

ABSTRACT

Electrochemical nitrogen oxide ions reduction reaction (NOx-RR) shows great opportunity for ammonia production under ambient conditions. Yet, performing NOx-RR in strong acidic conditions remains challenging due to the corrosion effect on the catalyst and competing hydrogen evolution reactions. Here, we demonstrate a stable La1.5Sr0.5Ni0.5Fe0.5O4 perovskite oxide for the NOx-RR at pH 0, achieving a Faradaic efficiency for ammonia of approaching 100% at a current density of 2 A cm-2 in a H-type cell. At industrially relevant current density, the NOx-RR system shows stable cell voltage and Faradaic efficiency for >350 h in membrane electrode assembly (MEA) at pH 0. By integrating the catalyst in a stacked MEA with a series connection, we have successfully obtained a record-breaking 2.578 g h-1 NH3 production rate at 20 A. This catalyst's unique acid-operability streamlines downstream ammonia utilization for direct ammonium salt production and upstream integration with NOx sources. Techno-economic and lifecycle assessments reveal substantial economic advantages for this ammonia production strategy, even when coupled with a plasma-based NOx production system, presenting a sustainable complement to the conventional Haber-Bosch process.

2.
Chempluschem ; : e202300600, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37994628

ABSTRACT

A set of graphitic carbon nitride samples was prepared using a straightforward experimental procedure without templates and any subsequent treatments. The materials were studied in-depth using a range of physical and chemical methods such as X-ray diffraction, FTIR spectroscopy, elemental analysis (CHN), nitrogen physisorption, SEM, XPS, TPD CO2 . The resulting g-C3 N4 was shown to be highly efficient in carboxymethylation of cinnamyl alcohol with dimethyl carbonate yielding up to ca. 82 % of the desired cinnamyl methyl carbonate. In the studied conditions, an increase in the surface N atomic content leads to an increase in selectivity towards the desired carbonate, while a higher surface O content was beneficial for side products. Metal-free graphitic carbon nitride was shown to be one of the most productive (ca. 2 mol/h kgcat ) in the investigated reaction among studied heterogeneous catalysts.

3.
ACS Omega ; 8(29): 25710-25726, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37521674

ABSTRACT

Epoxidation of two butane isomers (1-butene and isobutene) on the commercial titanium silicate (TS-1) catalyst was studied in a laboratory-scale trickle bed reactor. The transient step response technique was used as the main tool in the investigation. The transient responses revealed different dynamics of product formation in continuous operation. The study of isomers showed the impact of the molecular structure on the transient and stationary states of the system. The four-carbon chain present in 1-butene displayed a dynamic behavior with a prominent maximum of the conversion as a function of time-on-stream. On the contrary, the behavior of isobutene was displayed to be closer to ethene and propene under similar conditions reaching a steady state after ca. 2 h. The structure of the epoxide was an important factor in order to achieve a high epoxide selectivity. In isobutene epoxidation, the primary product 1,2-epoxy-2-methylpropane was highly reactive, giving a spectrum of parallelly formed byproducts. Therefore, the selectivity of the epoxide from isobutene was limited to ca. 70%. In the epoxidation of 1-butene, 1,2-epoxybutane was displayed to be a highly stable product with a selectivity close to 99%. Based on the transient and stationary data, a reaction mechanism was proposed for the epoxidation and ring-opening reactions present in the system.

4.
Langmuir ; 39(33): 11510-11519, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37277942

ABSTRACT

The adsorption efficiency of commercial activated carbon toward ibuprofen (IBU) was investigated and described using the adsorption dynamic intraparticle model (ADIM). Although the adsorption capacity of activated carbon has been widely studied, the kinetic models used in the literature are simplified, treating adsorption kinetics with pseudo-kinetic approaches. In this paper, a realistic model is proposed, quantitatively describing the influence of the main operation parameters on the adsorption kinetics and thermodynamics. The thermodynamic data were interpreted successfully with the Freundlich isotherm, deriving an endothermic adsorption mechanism. The system was found to be dominated by the intraparticle diffusion regime, and the collected data allowed the determination of the surface activation energy (ES = 60 ± 7 kJ/mol) and the fluid-solid apparent activation energy (EA = 6 ± 1 kJ/mol). The obtained parameters will be used to design adsorption columns, allowing the scale-up of the process.

5.
J Mol Graph Model ; 124: 108555, 2023 11.
Article in English | MEDLINE | ID: mdl-37348451

ABSTRACT

The hierarchical silicoaluminophosphate (SAPO-34) catalyst was synthesized using the mixtures of diethylamine (D) and butylamine (B) as a structure-directing agent (SDA), and carbon nanotube (CNT) as a secondary template in the hydrothermal method. The catalysts were characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), N2 physisorption, and temperature-programmed desorption of ammonia (NH3-TPD) techniques and evaluated for the catalytic activity in the Methanol to Olefins (MTO) process. The results showed that the use of CNT as the secondary template improved the hierarchical structure of SAPO-34 due to increasing the external surface area and mesoporosity and decreasing the particle size and as a result, made better the performance of the prepared SAPO-34 zeolite in the MTO process. Among all the prepared samples, the CNT-B-D catalyst synthesized by mixing three templates displayed the highest ethylene and propylene selectivity of 49% and 34%, respectively. Also, using CNT in the synthesis of samples increased the catalytic stability. In addition, pure, binary, and ternary adsorption isotherms and diffusivities of the main products and reactants over the SAPO-34 were investigated by theoretical measurements, because sorption and diffusion affect the catalyst stability and C2-C3 selectivity in the MTO reaction. The higher diffusion rate of ethylene leads to following the aromatic-based cycle in the MTO process.


Subject(s)
Nanotubes, Carbon , Zeolites , Zeolites/chemistry , Methanol/chemistry , Spectroscopy, Fourier Transform Infrared , Alkenes/chemistry , Ethylenes
6.
Materials (Basel) ; 15(22)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36431455

ABSTRACT

Rare-earth orthoferrites have found wide application in thermocatalytic reduction-oxidation processes. Much less attention has been paid, however, to the production of CeFeO3, as well as to the study of its physicochemical and catalytic properties, in particular, in the promising process of CO2 utilization by hydrogenation to CO and hydrocarbons. This study presents the results of a study on the synthesis of CeFeO3 by solution combustion synthesis (SCS) using various fuels, fuel-to-oxidizer ratios, and additives. The SCS products were characterized by XRD, FTIR, N2-physisorption, SEM, DTA-TGA, and H2-TPR. It has been established that glycine provides the best yield of CeFeO3, while the addition of NH4NO3 promotes an increase in the amount of CeFeO3 by 7-12 wt%. In addition, the synthesis of CeFeO3 with the participation of NH4NO3 makes it possible to surpass the activity of the CeO2-Fe2O3 system at low temperatures (300-400 °C), as well as to increase selectivity to hydrocarbons. The observed effects are due to the increased gas evolution and ejection of reactive FeOx nanoparticles on the surface of crystallites, and an increase in the surface defects. CeFeO3 obtained in this study allows for achieving higher CO2 conversion compared to LaFeO3 at 600 °C.

7.
Dalton Trans ; 51(35): 13540, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36047465

ABSTRACT

Correction for 'Catalyst supports based on ZnO-ZnAl2O4 nanocomposites with enhanced selectivity and coking resistance in isobutane dehydrogenation' by Anna N. Matveyeva et al., Dalton Trans., 2022, 51, 12213-12224, https://doi.org/10.1039/d2dt02088b.

8.
Dalton Trans ; 51(32): 12213-12224, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35894679

ABSTRACT

Development of coking resistant supports and catalysts for hydrocarbons conversion is challenging, especially when using such acidic materials as alumina. Apparently, this problem can be mitigated by using spinels that are less acidic, being, however, thermally stable. In this study, a series of ZnO-ZnAl2O4 nanocomposites with different ZnO loading were prepared by urotropine-nitrate combustion synthesis to be used as supports for isobutane dehydrogenation catalysts. The nanocomposites were characterized by XRD, SEM, N2-physisorption analysis, EDS, H2-TPR, TPD of NH3 and tested in isobutane dehydrogenation. Spinels with small amounts of ZnO displayed higher acidity and specific surface areas than samples with a higher ZnO content (30-40 mol%). At the same time, the maximum activity and the lowest selectivity to by-products (CH4 and C3H6) after 10 min of the reaction were observed for the nanocomposite containing 20 mol% of ZnO. The obtained nanocomposites have demonstrated better resistance to coking compared to commercial alumina.

9.
Phys Chem Chem Phys ; 24(14): 8269-8278, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35319048

ABSTRACT

Mesoporous materials are promising catalysts for production of biofuels. Herein, H-MCM-41 catalysts with different concentrations of the silica Bindzil binder (10-50 wt%) were prepared and characterized using pulsed-field gradient (PFG) NMR in the powder form and as extrudates. Effective diffusion coefficients (De) are measured in all cases. Diffusivities of n-hexadecane were found smaller for extrudates as compared to the powder catalysts. The estimates of diffusive tortuosity were also determined. PFG NMR data showed one major component that reveals diffusion in interconnected meso- and micropores and one other minor component (1-2%) that may correspond to more isolated pores or may represent complex effects of restricted diffusion. Therefore, several approaches including initial slope analysis of spin-echo attenuation curves, two-component fitting and Laplace inversion were used to discuss different aspects of diffusional transport in the studied H-MCM-41 materials. Correlations between De and the amount of Bindzil, the specific surface area, the micropore volume, the particle size, the total acid sites and the Lewis acid sites are discussed.

10.
Bioresour Technol ; 348: 126809, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35131462

ABSTRACT

The current work focuses on studying the aqueous phase reforming (APR) of pine and birch hydrolysate obtained from waste wood by using organic acids available from biorefineries. Processing of representative synthetic mixtures was utilized in the work in order to support data interpretation related to the influence of different chemical compound and processing parameters on the APR of the actual hydrolysates. It was shown, that hydrogenation of the hydrolysates prior to APR was not feasible in the presence of formic acid, which ruled out one potential processing route. However, it was successfully demonstrated that birch and pine hydrolysates could be directly processed obtaining close to full conversion. The best results were obtained with tailored bimetallic Pd-Pt/sibunit catalyst in a trickle bed reactor system in the temperature range 175 °C-225 °C.


Subject(s)
Betula , Water , Catalysis , Polysaccharides , Water/chemistry
11.
Nanomaterials (Basel) ; 11(12)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34947637

ABSTRACT

This research was focused on studying the performance of the Pd1Ag3/Al2O3 single-atom alloy (SAA) in the liquid-phase hydrogenation of di-substituted alkyne (1-phenyl-1-propyne), and development of a kinetic model adequately describing the reaction kinetic being also consistent with the reaction mechanism suggested for alkyne hydrogenation on SAA catalysts. Formation of the SAA structure on the surface of PdAg3 nanoparticles was confirmed by DRIFTS-CO, revealing the presence of single-atom Pd1 sites surrounded by Ag atoms (characteristic symmetrical band at 2046 cm-1) and almost complete absence of multiatomic Pdn surface sites (<0.2%). The catalyst demonstrated excellent selectivity in alkyne formation (95-97%), which is essentially independent of P(H2) and alkyne concentration. It is remarkable that selectivity remains almost constant upon variation of 1-phenyl-1-propyne (1-Ph-1-Pr) conversion from 5 to 95-98%, which indicates that a direct alkyne to alkane hydrogenation is negligible over Pd1Ag3 catalyst. The kinetics of 1-phenyl-1-propyne hydrogenation on Pd1Ag3/Al2O3 was adequately described by the Langmuir-Hinshelwood type of model developed on the basis of the reaction mechanism, which suggests competitive H2 and alkyne/alkene adsorption on single atom Pd1 centers surrounded by inactive Ag atoms. The model is capable to describe kinetic characteristics of 1-phenyl-1-propyne hydrogenation on SAA Pd1Ag3/Al2O3 catalyst with the excellent explanation degree (98.9%).

12.
Nanomaterials (Basel) ; 11(2)2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33673079

ABSTRACT

Herein, it has been shown that betulin can be transformed into its biologically active oxo-derivatives (betulone, betulinic and betulonic aldehydes) by liquid-phase oxidation over supported silver catalysts under mild conditions. In order to identify the main factors determining the catalytic behavior of nanosilver catalysts in betulin oxidation, silver was deposited on various alumina supports (γ-alumina and boehmite) using deposition-precipitation with NaOH and incipient wetness impregnation methods, followed by treatment in H2 or O2. Silver catalysts and the corresponding supports were characterized by X-ray diffraction, nitrogen physisorption, inductively coupled plasma optical emission spectroscopy, photoelectron spectroscopy and transmission electron microscopy. It was found that the support nature, preparation and treatment methods predetermine not only the average Ag nanoparticles size and their distribution, but also the selectivity of betulin oxidation, and thereby, the catalytic behavior of Ag catalysts. In fact, the support nature had the most considerable effect. Betulin conversion, depending on the support, increased in the following order: Ag/boehmite < Ag/boehmite (calcined) < Ag/γ-alumina. However, in the same order, the share of side reactions catalyzed by strong Lewis acid centers of the support also increased. Poisoning of the latter by NaOH during catalysts preparation can reduce side reactions. Additionally, it was revealed that the betulin oxidation catalyzed by nanosilver catalysts is a structure-sensitive reaction.

13.
Ultrason Sonochem ; 73: 105503, 2021 May.
Article in English | MEDLINE | ID: mdl-33662752

ABSTRACT

Waste minimization strategy was applied in the current work for synthesis of the catalysts from industrial solid waste, namely desulfurization slag. The starting slag material comprising CaCO3, Ca(OH)2, SiO2, Al2O3, Fe2O3, and TiO2 was processed by various treating agents systematically varying the synthesis parameters. A novel efficient technique - ultrasound irradiation, was applied as an additional synthesis step for intensification of the slag dissolution and crystallization of the new phases. Physico-chemical properties of the starting materials and synthesized catalysts were evaluated by several analytical techniques. Treatment of the industrial slag possessing initially poor crystal morphology and a low surface area (6 m2/g) resulted in formation of highly-crystalline catalysts with well-developed structural properties. Surface area was increased up to 49 m2/g. High basicity of the neat slag as well as materials synthesized on its basis makes possible application of these materials in the reactions requiring basic active sites. Catalytic performance of the synthesized catalysts was elucidated in the synthesis of carbonate esters by carboxymethylation of cinnamyl alcohol with dimethyl carbonate carried out at 150 °C in a batch mode. Ultrasonication of the slag had a positive effect on the catalytic activity. Synthesized catalysts while exhibiting similar selectivity to the desired product (ca. 84%), demonstrated a trend of activity increase for materials prepared using ultrasonication pretreatment. The choice of the treating agent also played an important role in the catalytic performance. The highest selectivity to the desired cinnamyl methyl carbonate (88%) together with the highest activity (TOF35 = 3.89*10-7 (mol/g*s)) was achieved over the material synthesized using 0.6 M NaOH solution as the treating agent with the ultrasound pre-treatment at 80 W for 4 h.

14.
ChemSusChem ; 14(1): 150-168, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-32940953

ABSTRACT

Recent developments in transformations of biobased 5-hydroxymethylfurfural to 2,5-dimethylfuran, a potential liquid fuel, are critically summarized. The highest yield of 2,5-dimethylfuran (more than 98 %) from 5-hydroxymethylfurfural are obtained over bimetallic Cu-Co supported on carbon at 180 °C under 5 bar hydrogen in 2-propanol and over Ni supported on mesoporous carbon at 200 °C under 30 bar hydrogen in water in a batch reactor. The desired catalyst should have relatively high metal dispersion and some acidity to facilitate both hydrogenation and hydrogenolysis. However, overhydrogenation and overhydrogenolysis forming 2,5-dimethyltetrahydrofuran and methylfuran, respectively, should be suppressed. Furthermore, a hydrophobic support is more selective than oxide-based support. After a careful adjustment of the residence time in a continuous reactor it is also possible to produce high yields of 2,5-dimethylfuran even over Pt/C. The main challenges limiting the industrial feasibility of these reactions are relatively low initial reactant concentration, catalyst deactivation by sintering, leaching and coking. In addition to selection of optimum reaction conditions and catalyst properties, kinetic modelling was also summarized.

15.
ChemSusChem ; 13(18): 4833-4855, 2020 Sep 18.
Article in English | MEDLINE | ID: mdl-32667135

ABSTRACT

Recent developments in sugar transformations to methyl lactate and lactic acid are critically summarized. The highest yield of methyl lactate from glucose obtained over Sn(salen)/octylmethyl imidazolium bromide catalyst was 68 % at 160 °C whereas the highest yield of lactic acid of 58 % was achieved over hierarchical Lewis acidic Sn-Beta catalysts at 200 °C under inert atmosphere. In addition to the desired products also humins are formed in water whereas in methanol alkyl glucosides- and -fructosides as well as acetals were generated, especially in the presence of Brønsted-acidic sites. The main challenges limiting the industrial feasibility of these reactions are incomplete liquid phase mass balance closure, complicated product analysis and a lack of kinetic data. In addition to reporting optimized reaction conditions and catalyst properties also catalyst reuse and regeneration as well as kinetic modelling and continuous operation are summarized.

16.
RSC Adv ; 10(51): 30476-30480, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-35516022

ABSTRACT

d-Fructose is an important starting material for producing furfurals and other industrially important chemicals. While the base-catalyzed and enzymatic conversion of d-glucose to d-fructose is well known, the employed methods typically provide limited conversion. d-Glucosone can be obtained from d-glucose by enzymatic oxidation at the C2 position and, subsequently, selectively hydrogenated at C1 to form d-fructose. This work describes an investigation on the hydrogenation of d-glucosone, using both chromatographically purified and crude material obtained directly from the enzymatic oxidation, subjected to filtration and lyophilization only. High selectivities towards d-fructose were observed for both starting materials over a Ru/C catalyst. Hydrogenation of the crude d-glucosone was, however, inhibited by the impurities resulting from the enzymatic oxidation process. Catalyst deactivation was observed in the case of both starting materials.

18.
ACS Sustain Chem Eng ; 6(12): 16205-16218, 2018 Dec 03.
Article in English | MEDLINE | ID: mdl-30555753

ABSTRACT

Hydrodeoxygenation (HDO) of isoeugenol (IE) was investigated using bimetallic iridium-rhenium and platinum-rhenium catalysts supported on alumina in the temperature and pressure ranges of 200-250 °C and 17-40 bar in nonpolar dodecane as a solvent. The main parameters were catalyst type, hydrogen pressure, and initial concentration. Nearly quantitative yield of the desired product, propylcyclohexane (PCH), at complete conversion in 240 min was obtained with Ir-Re/Al2O3 prepared by the deposition-precipitation method using 0.1 mol/L IE initial concentration. High iridium dispersion together with a modification effect of rhenium provided in situ formation of the IrRe active component with reproducible catalytic activity for selective HDO of IE to PCH. The reaction rate was shown to increase with the increasing initial IE concentration promoting also HDO and giving a higher liquid phase mass balance. Increasing hydrogen pressure benefits the PCH yield.

19.
Ind Eng Chem Res ; 57(6): 2050-2067, 2018 Feb 14.
Article in English | MEDLINE | ID: mdl-30270980

ABSTRACT

Carbon-supported mono- and bimetallic catalysts prepared via incipient wetness impregnation were systematically studied in aqueous-phase reforming (APR) of xylitol aiming at hydrogen production from biomass. The catalytic performance of several VIII group metals and their combinations, such as Pt, Ni, Pt-Ni, Re, Pt-Re, Ru, Pt-Ru, and Pt-Co, was compared for xylitol APR in a fixed-bed reactor at 225 °C and 29.7 bar (N2). Ni/C, Ru/C, and Re/C catalysts displayed significantly lower activity compared to others. Activity and selectivity to H2 of bimetallic Pt-Ni/C, Pt-Co/C, and Pt-Ru/C catalysts were close to that of Pt/C. Pt-Re/C catalyst showed an outstanding performance which was accompanied by a shift of the reaction pathways to the alkane formation and thereby lower hydrogen selectivity. Addition of the second metal to Pt was not found to be beneficial for hydrogen production, thus leaving Pt/C as the optimum carbon-supported catalyst.

20.
Molecules ; 23(4)2018 04 18.
Article in English | MEDLINE | ID: mdl-29670070

ABSTRACT

Measurements of the zeta potential of solid heterogeneous supports are important for preparation of metal supported catalysts and for shaping zeolites into extrudates. In the current work, different types of heterogeneous support materials such as SiO2, Al2O3, and a range of beta zeolites of different silica- to-alumina ratio were analysed. It was observed that parameters such as temperature, pH and acidity significantly affect the zeta potential. In several instances, depending on the materials' acidity and microstructure, maxima in zeta potential were observed. The solid materials were thoroughly characterized using XRD, SEM, EDX, TEM, nitrogen physisorption, Al-NMR and FTIR with pyridine before zeta potential measurements.


Subject(s)
Acids/chemistry , Static Electricity , Temperature , Zeolites/chemistry , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy , Oxides/chemistry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...